#### 1. はじめに

日本の都市部ではこれまで、ディーゼル自動車等が主として挙げられる化石燃料燃焼起源の粒子状物質による大気汚染が問題であったが、1990年から最近にかけてのディーゼル自動車に対する規制強化の結果、大気中微小粒子 (PM<sub>2.5</sub>)濃度は大幅に減少した。この結果を受けて、ディーゼル自動車以外の PM<sub>2.5</sub>の寄与について目を向ける必要性が増し、近年バイオマス起源の影響が注目され始めた。バイオマス燃焼により生成したススや有機エアロゾルが大気中へ寄与していることが確認されていることから、重要な一次発生源として挙げられる。さらに、これら一次排出粒子からの二次生成粒子の生成への寄与も確認されている(Takahashi *et al.*, 2007; Hagino *et al.*, 2006)。このため、今後の大気質の改善を図るには、バイオマス燃焼由来の有機粒子や二次生成粒子についても注目していく必要がある。

本研究では、東京都内にて季節別に  $PM_{2.5}$  のサンプリングを行い、バイオマス燃焼時にセルロース 熱分解生成物として発生するレボグルコサン (levoglucosan; 1,6-anhydro- $\beta$ -D-glucose) を始めとした有 機成分やバイオマス燃焼の起こる地点で主要な成分として検出される有機炭素 (OC) 、元素状炭素 (EC) 、K<sup>+</sup>等に着目し、極性有機粒子の挙動について調査を行った。

また、EC においては生成における燃焼過程や性質の違いから char-EC と soot-EC とに分けられる (Han *et al.*, 2007) 。char-EC は低温での不完全燃焼成分であり、主に各種バイオマスの燃焼から生成す る成分であることが報告されており、一方の soot-EC は、高温における不完全燃焼時のガス-粒子化 により超微小粒子として発生したものが粒子に凝集して生成し、主にディーゼルトラックに由来する 成分とされている (Han *et al.*, 2007 and 2010) 。本研究ではこれらの物質についても調査を行い、バイ オマス燃焼の PM<sub>2.5</sub>に対する影響評価を行った。

#### 2. 調查地点·研究方法

サンプリング条件ならびにサンプリング 地点を Table 1、Fig.1 にそれぞれ示す。自 排局のうち、Oji (周辺区部) と Kunitachi (多摩部)は、日交通量が平均3~5万台、 大型車混入率が 15%以上となっており、 Shinkawa (周辺区部) では日交通量5万台 以上、大型混入率15%以上となっている地 点である(東京都, 2010)。一般局2地点に おける SPM 濃度年平均値は、Harumi(都 心部) で 0.029 mg/m<sup>3</sup>、Shishibone (周辺区 部) で 0.026 mg/m<sup>3</sup>と地域差が見られた。 このように各地点における地域性の違いを 考慮した上で地点の選出を行なった。FRM により捕集した PM2.5 中、含酸素有機化合 物の定量分析は以下の手順にて行った。試 料石英繊維フィルターの 1/4 をガラス製バ イアル瓶に入れ、ジクロロメタン(特級、 Wako) /メタノール (特級、Wako) (2:1) 混 合溶媒 5 mL を加え、氷浴中にて 20 分間超 音波抽出した。その後、PTFE 製のディス

ポーザブルフィルター (ADVANTEC®

DIMIC<sup>®</sup>-13<sub>HP</sub>, 0.20 µm pore size, Toyo Roshi

**Table 1. Sample conditions** 

Urban background (Machida)

10 km

| Sampler         | SIBATA LV-250 (Impactor method)                                          |
|-----------------|--------------------------------------------------------------------------|
| Flow rate       | 16.7 L/min                                                               |
| Filter          | 47 mm $\phi$ quartz fiber filter (Pallflex)                              |
| Sampling time   | 23.5 h                                                                   |
| Sampling period | Spring ; 2008/5/19-2008/6/1                                              |
|                 | Summer; 2008/7/28-2008/8/10                                              |
|                 | Autumn; 2008/11/4-2008/11/17                                             |
|                 |                                                                          |
|                 | Winter ; 2009/2/2-2009/2/15                                              |
| Urban backgroun | Winter ; 2009/2/2-2009/2/15<br>Urban background (Shishibone)<br>d (Oume) |



Roadside (Shinkawa)



Kaisha, Ltd.) により濾過した。濾液を1 mL リアクティーバイアルビンに移しな がら,乾燥窒素気流下で濃縮し、最終的 に溶媒を完全に揮発させた。そこに,ジ クロロメタン(脱水、Wako)/ヘキサン (脱水、Wako)(1:1)混合溶媒を50 µL、 さらにシリル化試薬として BSTFA+1%

#### Table 2. Analytical conditions for GC/MS

| GC/MS (GCM  | IS-QP2010, Shimadzu)                                               |
|-------------|--------------------------------------------------------------------|
| Column      | Fused silica capillary column DB-5                                 |
|             | $(0.32 \text{ mmID} \times 30 \text{ m} \times 0.32  \mu\text{m})$ |
| Injection   | Splitless, 2 µL                                                    |
| Temperature | 60°C (2 min)-10°C/min-250°C-5°C/min-300°C                          |
| Carrier gas | He; 3.7 mL/min                                                     |
| Ion source  | 230°C for EI mode (400 mA, 70 eV)                                  |

TMCS (*N*,*O*-bis(trimethylsilyl)trifluoroacetamide with 1% trimethylchlorosilane, Thermo Scientific) を 50 µL、 内部標準溶液 (IS, 50 mg/L *n*-dodecylbenzene, TCI) 10 µL を添加し、75 °Cにて 2.5 h 加熱することでシ リル化反応を行った (Fig. 2) 。反応終了後、GC/MS 用ミニバイアルへと移し入れ、GC/MS (GCMS-QP2010, Shimadzu) により分析を行った。GC/MS 分析は、Table 2 示す実験条件により行った。 ピークの同定はリテンションタイム ( $t_R$  = 14.4 min) で判断し、さらに定量用イオン (m/z = 73)、確認 イオン (m/z = 204, 333) を設定し、MS スペクトルのライブラリー検索によりレボグルコサンの MS ス ペクトルと合致するかを確認した。定量には内部標準法により行った。また、添加回収試験の結果、 抽出効率は 80-95 %であり、大気サンプル中のレボグルコサンは完全にシリル化したものと判断して 得られた定量値に対する補正等は行っていない。検出下限値は、検量線に用いた最低濃度 (50 ng/µL) の標準溶液を6回測定し、その標準偏差の3倍として算出した。なお、ここで示した検出下限値を本 研究における捕集条件で大気中濃度に換算すると、1.53 ng/m<sup>3</sup>に相当する。

3. 結果と考察

3.1. レボグルコサン、char-EC、soot-EC 成分の挙動変化

**Fig. 3** に四季におけるレボグルコサン濃度の経日変化(ただし、Oume は夏、Machida は夏・冬の結 果が欠損)を、**Fig. 4** に POC、char-EC、soot-EC、OC/EC、そして char-EC/soot-EC 値の経日変化を、 **Table 3** にレボグルコサンの各季節平均濃度をそれぞれ示す。



Fig. 3. Diurnal variations of levoglucosan concentrations in PM<sub>2.5</sub> by site.



Fig. 4. Diurnal variations of POC, char-EC, soot-EC concentrations OC/EC and char-EC/soot-EC ratios in  $PM_{2.5}$  by site.



Table 3. Levoglucosan [ng/m<sup>3</sup>], char-EC [ $\mu$ g/m<sup>3</sup>] and soot-EC [ $\mu$ g/m<sup>3</sup>] max, min and mean concentrations in PM<sub>2.5</sub> by site

Harumi Winter Component Spring Summer Autumn Min. Max.  $[\mu g/m^3]$ Mean Max. Min. Mean Max. Mean Max. Min. Mean Min. levoglucosan 5.6 0.0 72.9 712.5 18.5 12.2 1.7 75.7 262.9 19.6 274.1 43.4 [ng/m<sup>3</sup>] char-EC 2.9 1.4 2.9 0.5 1.3 2.3 0.3 1.1 0.4 0.5 1.7 4.1 soot-EC 0.5 0.9 0.4 0.7 0.3 0.6 0.4 0.4 0.5 0.2 0.6 0.3 <u>Oji</u> Winter Component Spring Summer Autumn Mean  $[\mu g/m^3]$ Min Mean Max Min Mean Max Min Mean Max Min Max levoglucosan 5.3 14.2 0.0 48.6 204.7 0.7 299.9 1136.0 11.7 51.4 2.1 95.0 [ng/m<sup>3</sup>] char-EC 1.5 3.1 0.5 1.8 3.4 0.4 2.6 5.8 0.5 2.0 4.2 0.5 soot-EC 0.6 0.9 0.3 0.7 1.0 0.3 0.4 0.8 0.2 0.5 0.8 0.2 Shishibone Winter Component Autumn Spring Summer  $[\mu g/m^3]$ Mean Max Min Mean Max Min Mean Max Min Mean Max Min levoglucosan 8.9 24.5 1.3 5.6 46.7 0.0 73.2 190.9 22.4 134.8 417.9 17.6  $[ng/m^3]$ char-EC 0.8 2.1 0.9 2.4 1.7 4.4 0.6 1.4 2.7 0.4 0.1 0.1 soot-EC 0.3 0.5 0.2 0.5 0.8 0.3 0.3 0.5 0.2 0.3 0.5 0.2 <u>Shinkawa</u>

| Component                            |      | Spring |     |      | Summer |     |      | Autumn |      | Winter |       |      |  |
|--------------------------------------|------|--------|-----|------|--------|-----|------|--------|------|--------|-------|------|--|
| $[\mu g/m^3]$                        | Mean | Max    | Min | Mean | Max    | Min | Mean | Max    | Min  | Mean   | Max   | Min  |  |
| levoglucosan<br>[ng/m <sup>3</sup> ] | 11.9 | 28.7   | 1.6 | 3.4  | 28.0   | 0.0 | 97.6 | 379.1  | 15.0 | 190.0  | 567.9 | 12.9 |  |
| char-EC                              | 1.4  | 3.0    | 0.4 | 1.8  | 3.6    | 0.6 | 2.1  | 5.2    | 0.5  | 1.8    | 3.1   | 0.5  |  |
| soot-EC                              | 0.5  | 0.9    | 0.3 | 0.7  | 1.6    | 0.4 | 0.5  | 0.8    | 0.3  | 0.5    | 0.7   | 0.3  |  |

#### Kunitachi

| Component                            |      | Spring |     |      | Summer |     |      | Autumn |      |      | Winter |     |  |  |
|--------------------------------------|------|--------|-----|------|--------|-----|------|--------|------|------|--------|-----|--|--|
| $[\mu g/m^3]$                        | Mean | Max    | Min | Mean | Max    | Min | Mean | Max    | Min  | Mean | Max    | Min |  |  |
| levoglucosan<br>[ng/m <sup>3</sup> ] | 21.3 | 51.6   | 0.3 | 3.9  | 25.5   | 0.0 | 91.7 | 328.0  | 12.2 | 41.0 | 163.4  | 0.0 |  |  |
| char-EC                              | 1.4  | 2.9    | 0.4 | 1.8  | 3.5    | 1.0 | 2.0  | 3.9    | 0.5  | 2.2  | 4.7    | 0.8 |  |  |
| soot-EC                              | 0.9  | 1.8    | 0.4 | 0.8  | 1.9    | 0.4 | 0.8  | 1.3    | 0.3  | 0.7  | 1.4    | 0.4 |  |  |

| Tab | le 3. | Continued |  |
|-----|-------|-----------|--|
|     |       |           |  |

Oume

| Component                            | Spring |      |      |      | Summer |      |      | Autumn |      |      | Winter |      |  |  |
|--------------------------------------|--------|------|------|------|--------|------|------|--------|------|------|--------|------|--|--|
| $[\mu g/m^3]$                        | Mean   | Max. | Min. | Mean | Max.   | Min. | Mean | Max.   | Min. | Mean | Max.   | Min. |  |  |
| levoglucosan<br>[ng/m <sup>3</sup> ] | 9.4    | 26.5 | 2.4  | -    | -      | -    | 58.7 | 205.4  | 12.0 | 48.4 | 163.5  | 5.3  |  |  |
| char-EC                              | 0.6    | 1.7  | 0.1  | 1.0  | 2.1    | 0.4  | 1.0  | 2.1    | 0.2  | 1.0  | 2.0    | 0.1  |  |  |
| soot-EC                              | 0.4    | 0.5  | 0.2  | 0.6  | 0.9    | 0.4  | 0.4  | 0.5    | 0.2  | 0.3  | 0.5    | 0.1  |  |  |

Machida

| Component                            | Spring |      |     |      | Summer |     |      | Autumn |     | Winter |     |     |  |
|--------------------------------------|--------|------|-----|------|--------|-----|------|--------|-----|--------|-----|-----|--|
| $[\mu g/m^3]$                        | Mean   | Max  | Min | Mean | Max    | Min | Mean | Max    | Min | Mean   | Max | Min |  |
| levoglucosan<br>[ng/m <sup>3</sup> ] | 11.7   | 26.3 | 2.5 | -    | -      | -   | 79.5 | 304.0  | 7.7 | -      | -   | -   |  |
| char-EC                              | 0.6    | 1.6  | 0.2 | 0.7  | 1.3    | 0.4 | 1.1  | 3.2    | 0.3 | 1.0    | 2.3 | 0.3 |  |
| soot-EC                              | 0.4    | 0.5  | 0.3 | 0.5  | 1.1    | 0.3 | 0.4  | 0.6    | 0.3 | 0.4    | 0.6 | 0.2 |  |

レボグルコサンの経日変化を見てみると、春季や夏季が低濃度に推移しているのに対して、秋季ならびに冬季においては顕著に高い濃度で推移しており、季節によってその排出量が異なっていることが推測される結果となった。レボグルコサンは植物中に含まれるセルロースが熱分解して生成する化合物であり、バイオマス燃焼によって、その排出が確認されていることからバイオマス燃焼指標物質として用いられている(Simoneit et al., 1999)。本研究においても、レボグルコサンが検出されたことから、都市大気においてもバイオマス燃焼により生成した粒子の影響を受けていることが示唆された。さらに、秋季ならびに冬季において高濃度に検出していたことから、気温低下による逆転層の形成が影響していることが考えられたため、レボグルコサン経日変化(Fig. 3)、混合層高度(Fig. 5、Table 4)、さらに日平均風速を平均化した値(Table 5)との比較を行った。なお、混合層高度 H (m)(混合層の上面高度)は、その日に照射された積分日射量 I (cal/cm<sup>2</sup>)の2分の1 乗に比例するものとし、測定結果のプロットに適合する曲線として導かれた次式を用いて算出した(森川ら, 1990)。

#### $H = 76.8 I^{0.499}$

最も平均風速が小さいのは秋であり、夏と冬とではほぼ同等な結果を得たが、混合層高度にて各季節間で差が見られた。Fig.5において混合層高度が低い日(<1000m程度以下)と、レボグルコサン濃度が極大値を示している日とが一致している日が多く見られた。また、これら極大値を示す日は、PM<sub>25</sub> 濃度、各イオン濃度、char-EC/soot-EC が高濃度となる日とも一致していた。これらのことから、秋季 や冬季にて見られる高濃度日は、気温低下による接地逆転層の形成が原因の一つとして考えられ、大気汚染物質の高濃度化しやすい気象条件化にあったと推測される。レボグルコサンの季節別平均濃度 においても、各地点にて秋季・冬季が、春季・夏季における平均濃度と比較すると高い値を示していた (Table 3)。

| sonal mea                   | ns of maxin                 | num mixing                                         | g depth                                                                | Table 5. Seand by sea                                                      | l by site                                                                                   |                                                                                                                                     |                                                                                                                                                          |                                                                                                                                                                                  |
|-----------------------------|-----------------------------|----------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Spring                      | Summer                      | Autumn                                             | Winter                                                                 | -                                                                          | Spring                                                                                      | Summer                                                                                                                              | Autumn                                                                                                                                                   | Winter                                                                                                                                                                           |
| spring Summer Autumn winter |                             | - Harumi                                           | 1 /                                                                    | 16                                                                         | 1 /                                                                                         | 16                                                                                                                                  |                                                                                                                                                          |                                                                                                                                                                                  |
| 1401 1571 921 1188 Shink    | Shinkawa                    | 1.4                                                | 1.0                                                                    | 1.4                                                                        | 1.0                                                                                         |                                                                                                                                     |                                                                                                                                                          |                                                                                                                                                                                  |
|                             |                             |                                                    |                                                                        | - Oji                                                                      | 2.2                                                                                         | 2.0                                                                                                                                 | 1.4                                                                                                                                                      | 1.9                                                                                                                                                                              |
|                             |                             |                                                    |                                                                        | Shishibone                                                                 | 2.2                                                                                         | 1.9                                                                                                                                 | 1.8                                                                                                                                                      | 2.0                                                                                                                                                                              |
|                             |                             |                                                    |                                                                        | Kunitachi                                                                  | 2.1                                                                                         | 1.6                                                                                                                                 | 1.4                                                                                                                                                      | 1.7                                                                                                                                                                              |
|                             | sonal mea<br>Spring<br>1401 | sonal means of maxin<br>Spring Summer<br>1401 1571 | sonal means of maximum mixing<br>Spring Summer Autumn<br>1401 1571 921 | sonal means of maximum mixing depthSpringSummerAutumnWinter140115719211188 | Table 5. See<br>and by seaSpringSummerAutumnWinter140115719211188OjiShishibone<br>Kunitachi | Table 5. Seasonal n<br>and by seasonSpringSummerAutumnWinterSpring140115719211188Harumi<br>Oji1.4Oji2.2Shishibone2.2Kunitachi2.11.4 | Table 5. Seasonal means of maximum mixing depthSpringSummerAutumnWinterSpringSummer140115719211188Shinkawa1.41.6Oji2.22.0Shishibone2.21.9Kunitachi2.11.6 | Table 5. Seasonal means of wind speed<br>and by seasonSpringSummerAutumnWinterSpringSummer Autumn1401157192111881.41.61.4Oji2.22.01.4Shishibone2.21.91.8Kunitachi2.11.61.41.61.4 |



レボグルコサン濃度は季節間においてその差が顕著に見られたが、レボグルコサン濃度が極大となる日にちが重なるなど、地域間において類似した変動を見せていた。Table 6 に各地点間におけるレボ グルコサン濃度の相関をとった際の相関係数を示す。

Kunitachi を除く地点において各地点ともに正の高い相関が得られた。このことから、それぞれの測定局近傍の局所的な発生源影響よりも広域的な影響がレボグルコサン濃度の変動に起因していることが推測される結果であったといえる。この影響に関しては後述にて示すものとする。

Table 6. Site to site correlation coefficients of levoglucosan concentrations by season (\*:p < 0.05; \*\*:p < 0.01; \*\*\*:p < 0.001)

|            | Harumi | Oji           | Shishibone    | Shinkawa      | Oume         | Machida       | Kunitachi    |
|------------|--------|---------------|---------------|---------------|--------------|---------------|--------------|
| Harumi     |        | $0.909^{***}$ | 0.947***      | $0.888^{***}$ | 0.919***     | 0.920***      | 0.375        |
| Oji        |        |               | $0.889^{***}$ | 0.837***      | $0.554^{*}$  | 0.385         | 0.214        |
| Shishibone |        |               |               | $0.827^{***}$ | 0.963***     | $0.919^{***}$ | 0.506        |
| Shinkawa   |        |               |               |               | $0.771^{**}$ | 0.956***      | $0.577^{*}$  |
| Oume       |        |               |               |               |              | $0.957^{***}$ | $0.742^{**}$ |
| Machida    |        |               |               |               |              |               | 0.841***     |
| Kunitachi  |        |               |               |               |              |               |              |

#### 3.2. レボグルコサンと OC, EC, K<sup>+</sup>, POC との相関

OC、EC、K<sup>+</sup>はバイオマス燃焼の起こる地点で主要な成分として検出され、レボグルコサンと良い 相関を示すことが報告されている (Andreae, 1983; Chacier *et al.*, 1995) ことから、これら成分との相関 を観察した。さらに、POC にはレボグルコサンなどの高分子量な水溶性有機炭素成分 (WSOC) が、 構成成分として大きく寄与しているとの報告 (Schneider, 2005) がなされていることから、これら成分 との相関も示した。また、CI<sup>-</sup>はバイオマス燃焼に伴って生成することが確認されている (William *et al.*, 1999) ことから、これら成分についてもその相関を観察した。Fig. 6 には各地点、各季節におけるレボ グルコサンと OC、EC、POC、K<sup>+</sup>との相関を(ただし、4 季節の結果が得られていない地点 Oume、 Machida を除く)、そして Table 7 には Fig. 6 で得られた各相関係数をそれぞれ示す。

OC との相関は、春季・夏季において、いずれの地点においても見られず、秋季では Oji を除く地点 にて正の相関が、冬季においては Oume を除く地点で正の高い相関がそれぞれ見られた。さらに、冬 季におけるその相関は秋季よりも高い相関を示していた。また、POC との相関においては、OC の場 合と同様に、秋季よりも冬季において正の高い相関が観察されたが、OC との相関と比較すると低い 結果となった。 EC との相関もOC との相関と同様な季節間変化を示しものの、OC の場合と比較すると相関係数は 小さい傾向を示していた。これは、EC の排出源はバイオマス燃焼のほかに自動車排ガスによる排出 も影響すること、さらに、燃焼条件によりその排出量が変化するためと考えられる。

 $K^+$ との相関は、秋季ならびに冬季において正の相関が得られており、秋季の方が冬季よりも相関が高い傾向が観察された。前述のように、 $K^+$ はバイオマス燃焼に伴ってその生成が確認されており、バイオマス燃焼指標物質 (Duan et al., 2004) とされているが、レボグルコサンとの相関はそれほど高くない。この理由として、 $K^+$ は海洋起源、土壌起源、生物残骸からの寄与、さらに都心部では肉調理によってその発生が確認 (Zhang et al., 2008) され、発生源が混在しているためであると考えられる。このことから、数多くの発生源が混在する都市部において、 $PM_{2.5}$ の $K^+$ をバイオマス燃焼指標物質として扱うのは困難と考えられる。

CIとの相関は、秋季においてはいくつかの地点で相関が見られるが、冬季において高い相関を示す 傾向が見られた。相関が見られたことから、大気中の微小粒子に存在する CI の起源は、バイオマス燃 焼に伴って生成した粒子が含まれていることが示唆されたが、そのほとんどが海洋起源であることが 報告されている (William *et al.*, 1999)。さらに、バイオマス燃焼に伴って CI が排出されるのは確かで はあるが、燃料や燃焼条件(燃焼温度、空燃費)によってその排出量が変化するとの報告が成されて いる (Khalil and Rasmussen, 2003)。このため、これら成分の相関から燃焼影響評価は可能ではあるが、 バイオマス燃焼寄与を推定するのは困難であると考えられる。



Fig. 6. Correlation of levoglucosan to OC, EC, POC and K<sup>+</sup> by site and by season.

Shishibone



Fig. 6. Continued.



|                | Harumi |             |              |              | Oji           |             |              |               | Shishibone  |              |               |               | Shinkawa    |              |          |              |
|----------------|--------|-------------|--------------|--------------|---------------|-------------|--------------|---------------|-------------|--------------|---------------|---------------|-------------|--------------|----------|--------------|
|                | Spring | Summer      | r Autumn     | Winter       | Spring        | Summer      | · Autumn     | Winter        | Spring      | Summer       | Autumn        | Winter        | Spring      | Summer       | r Autumn | Winter       |
| OC             | 0.0944 | 0.719**     | 0.816***     | 0.839***     | $0.788^{***}$ | $0.566^{*}$ | 0.252        | 0.833***      | 0.737***    | $0.748^{**}$ | 0.841***      | $0.905^{***}$ | $0.590^{*}$ | 0.915***     | 0.881*** | $0.665^{**}$ |
| POC            | 0.174  | 0.502       | 0.513        | 0.823***     | $0.746^{**}$  | 0.052       | 0.426        | 0.727***      | 0.715***    | $0.592^{*}$  | 0.696***      | $0.878^{***}$ | 0.475       | $0.579^{*}$  | 0.836*** | $0.718^{**}$ |
| EC             | 0.0188 | 0.489       | 0.723**      | $0.744^{**}$ | $0.609^{*}$   | 0.384       | 0.009        | $0.770^{**}$  | $0.648^{*}$ | $0.764^{**}$ | 0.730**       | 0.815***      | 0.431       | $0.750^{**}$ | 0.715**  | $0.593^{*}$  |
| $\mathbf{K}^+$ | 0.0637 | 0.254       | $0.740^{**}$ | $0.580^{*}$  | $0.581^{*}$   | 0.269       | 0.392        | $0.589^{*}$   | $0.575^{*}$ | 0.487        | 0.818***      | $0.609^{*}$   | 0.545       | 0.284        | 0.869*** | 0.426        |
| Cl             | 0.102  | 0.179       | 0.295        | 0.684**      | 0.219         | 0.192       | $0.600^{*}$  | $0.800^{***}$ | 0.0141      | 0.112        | 0.525         | 0.699**       | 0.693**     | 0.126        | 0.468    | 0.641*       |
|                |        |             |              |              |               |             |              |               |             |              |               |               |             |              |          |              |
|                |        | Kun         | itachi       |              |               | Ou          | ıme          |               |             | Mac          | chida         |               |             |              |          |              |
|                | Spring | Summer      | r Autumn     | Winter       | Spring        | Summer      | · Autumn     | Winter        | Spring      | Summer       | · Autumn      | Winter        |             |              |          |              |
| OC             | 0.420  | 0.309       | $0.632^{*}$  | $0.660^{*}$  | 0.440         | -           | $0.666^{**}$ | 0.336         | $0.566^{*}$ | -            | $0.827^{***}$ | -             |             |              |          |              |
| POC            | 0.445  | 0.241       | $0.567^{*}$  | $0.573^{*}$  | 0.422         | -           | $0.567^{*}$  | 0.381         | $0.550^{*}$ | -            | $0.659^{*}$   | -             |             |              |          |              |
| EC             | 0.386  | $0.576^{*}$ | 0.246        | $0.613^{*}$  | 0.292         | -           | 0.721**      | 0.436         | 0.524       | -            | 0.831***      | -             |             |              |          |              |
| $\mathbf{K}^+$ | 0.342  | 0.205       | 0.462        | $0.576^{*}$  | 0.340         | -           | 0.483        | 0.111         | 0.394       | -            | 0.765****     | -             |             |              |          |              |
| Cl             | 0.438  | 0.150       | 0.187        | 0.473        | 0.083         | -           | 0.182        | $0.588^{*}$   | 0.144       | -            | 0.421         | -             |             |              |          |              |

Table 7. Correlation coefficients of levoiglucosan to OC, EC, POC, K<sup>+</sup> and Cl<sup>-</sup> by site and by season (\*:p < 0.05; \*\*:p < 0.01; \*\*\*:p < 0.01)

3.3. レボグルコサンと char-EC、soot-EC との相関

3.2 にてレボグルコサンと char-EC/soot-EC の経日変化を示したが、特に秋季と冬季においては、双方の変化挙動が類似していることを受けて、レボグルコサンと char-EC、soot-EC、そして char-EC/soot-EC との相関を Fig. 7 にそれぞれ示す(ただし、4季節の結果が得られていない地点 Oume、 Machida を除く)。さらに、相関係数を Table 8 に示す。



Fig. 7. Correlation of levoglucosan to char-EC, soot-EC and char-EC/soot-EC by site and by season.





- 286 -

Table 8. Correlation coefficients of levoiglucosan to char-EC, soot-EC and char-EC/soot-EC by site and by season (\* :p < 0.05; \*\* :p < 0.01; \*\*\* :p < 0.001)

|                   |        | Ha     | rumi         |          | Oji     |        |        |          | Shishibone   |             |             |          | Shinkawa |             |             |             |
|-------------------|--------|--------|--------------|----------|---------|--------|--------|----------|--------------|-------------|-------------|----------|----------|-------------|-------------|-------------|
|                   | Spring | Summer | Autumn       | Winter   | Spring  | Summer | Autumn | Winter   | Spring       | Summer      | Autumn      | Winter   | Spring   | Summer      | Autumn      | Winter      |
| char-EC           | 0.0320 | 0.591* | 0.735***     | 0.804*** | 0.661** | 0.382  | 0.0599 | 0.789*** | $0.665^{**}$ | $0.579^{*}$ | 0.805****   | 0.838*** | 0.481    | 0.646*      | 0.739***    | $0.586^{*}$ |
| soot-EC           | 0.313  | 0.121  | 0.544        | 0.339    | 0.501   | 0.145  | 0.530  | 0.339    | 0.044        | 0.172       | $0.600^{*}$ | 0.494    | 0.483    | $0.661^{*}$ | $0.617^{*}$ | 0.401       |
| charEC<br>/sootEC | 0.0768 | 0.397  | $0.762^{**}$ | 0.890*** | 0.663** | 0.152  | 0.350  | 0.869*** | 0.645*       | $0.549^{*}$ | 0.822***    | 0.882*** | 0.0245   | $0.579^{*}$ | 0.837***    | $0.628^{*}$ |
|                   |        |        |              |          |         |        |        |          |              |             |             |          |          |             |             |             |

|                   |        | Kuni    | itachi |        |             | Ou     | ime     |         | Machida |        |          |        |  |
|-------------------|--------|---------|--------|--------|-------------|--------|---------|---------|---------|--------|----------|--------|--|
|                   | Spring | Summer  | Autumn | Winter | Spring      | Summer | Autumn  | Winter  | Spring  | Summer | Autumn   | Winter |  |
| char-EC           | 0.331  | 0.673** | 0.319  | 0.613* | 0.284       | -      | 0.722** | 0.345   | 0.402   | -      | 0.844*** | -      |  |
| soot-EC           | 0.0489 | 0.068   | 0.436  | 0.352  | 0.235       | -      | 0.179   | 0.691** | 0.382   | -      | 0.488    | -      |  |
| charEC<br>/sootEC | 0.152  | 0.266   | 0.360  | 0.632* | $0.628^{*}$ | -      | 0.629*  | 0.071   | 0.292   | -      | 0.868*** | -      |  |

soot-EC との正の相関は Oume (Autumn) のみ見られたが、他の地点ならびに季節においては見られ ていなかった。むしろ、soot-EC 濃度はレボグルコサン濃度とは無関係に秋季ならびに冬季でほぼ一 定の濃度で存在しており、四季を通じてその濃度はほぼ一定に存在していたことから、季節変化に伴 う濃度変化は見出されなかった。季節変化による交通量変化が小さいと考えれば、これら soot-EC は 自動車排ガスに由来する成分であることが推測される。

char-EC との相関は、Oji (Autumn) ならびに Kunitachi (Autumn) を除く結果に関して、秋季ならび に冬季においてそれぞれ見られていた。さらに、いずれの結果においても、EC とレボグルコサンと の相関と比較すると (Table 7 参照)、その相関係数はレボグルコサンと char-EC との相関結果の方が高 い相関を示す結果となっていた。これらの結果から、char-EC の大部分はバイオマス燃焼由来成分で あることが推定される。また、Fig. 6 において、char-EC との相関における回帰直線では、それぞれ char-EC 切片が存在しているのが見て取れる。このことから、切片はバイオマス燃焼以外による char-EC の発生を示唆していると考えられる。char-EC は、バイオマス燃焼によりその生成が確認されている と同時に、ディーゼル自動車からの排出も確認されている (Cao *et al.*, 2006; Han *et al.*, 2007 and 2010) いる。今後の検証が必要と考えられるが、この char-EC 切片分はディーゼル車由来の可能性が高いと 考えられる。

レボグルコサンの経日変化 (Fig. 3) と char-EC/soot-EC の経日変化 (Fig. 4) を比較すると、ここまで の結果からバイオマス燃焼寄与が高いと考えられる秋季ならびに冬季においてその変化の挙動が類似 していることが分かる。そこで、これら成分間との相関を求めたところ、特に冬季の結果において正 の高い相関を示す結果となった。また、本研究において得られた char-EC/soot-EC の値を季節ごとの平 均値としてまとめたものを Table 9 に示し、文献により報告されている発生源影響別 char-EC/soot-EC 係数を Table 10 にまとめる。

|                                 |                               | ~      | ~              |        |                    |                  |                    |                   |
|---------------------------------|-------------------------------|--------|----------------|--------|--------------------|------------------|--------------------|-------------------|
| Table 9.                        | Table 9. char-EC/soot-EC mean |        |                |        | char-EC/soot-EC    | Site             | ref                |                   |
| coefficients by season and site |                               |        | Diesel exhaust | 0.3    | Hong Kong roadside | Cao et al., 2006 |                    |                   |
|                                 | Spring                        | Summer | Autumn         | Winter | Diesel exhaust     | 0.07             |                    | Han et al., 2007  |
| Harumi                          | 2.9                           | 2.3    | 5.2            | 3.1    | Diesel exhaust     | 0.04             |                    | Han et al., 2007  |
| Shishibone                      | 2.6                           | 1.7    | 6.1            | 4.1    | Gasoline emission  | 0.7              | Hong Kong roadside | Cao et al., 2006  |
| Oji                             | 3.3                           | 2.9    | 8.3            | 5.0    | Motor vehicle      | 0.6              |                    | Chow et al., 2004 |
| Shinkawa                        | 3.1                           | 2.7    | 5.4            | 4.3    | Coal combustion    | 1.9              | Xi'an city         | Cao et al., 2005  |
| Kunitachi                       | 2.4                           | 2.5    | 4.1            | 4.2    | Biomass burning    | 11.6             | Xi'an city         | Cao et al., 2005  |
|                                 |                               |        |                |        | Biomass burning    | 22.6             |                    | Chow et al., 2004 |

Table 10. char-EC/soot-EC coefficients reported

Table 10 より、自動車(ディーゼル自動車、ガソリン車)や石炭といった化石燃料燃焼による寄与 が高い場合、char-EC/soot-EC は小さい値を示す、言い換えればこれらからの EC の排出は、そのほと んどが soot-EC であるといえる。一方のバイオマス燃焼の場合、バイオマス燃焼寄与が高い地点にお けるサンプリング結果から算出した値 (Cao *et al.* 2005) と発生源調査により算出した値 (Chow *et al.*, 2004) とがあるが、いずれにおいてもその値は化石燃料燃焼の場合と比較すると大きい値を示す傾向 が見られる。これら値の違いは、char-EC と soot-EC の生成過程に由来するものと考えられている。バ イオマス燃焼におけるくすぶり燃焼時ならびに着火時においては、低温燃焼状態が続くため、生成す る粒子は未燃焼成分の凝縮が起こり、より大きな粒子を生成する(直径 1~100 μm)。一方、火炎燃焼 時では、高温燃焼により生じるガス成分同士が結合を繰り返して、多環芳香族炭化水素 (PAH)のよ うな成分が凝縮核として生成するため、小さい粒子(0.1~1 μm)となる傾向が高い (Frenklach *et al.*, 2002; Han *et al.*, 2010)。バイオマスの燃焼において、燃料の種類、化学的組成、そして空燃費等によ りその燃焼特性は異なるが、農業廃棄物の燃焼処理や民生用燃料として用いる場合、高温状態を維持 したまま燃焼させることは難しい。このことから、バイオマス燃焼により生成する EC 成分は大半を char-EC が占め、結果として char-EC/soot-EC 値が大きくなると考えられる。

本研究により得られた結果において (Table 9) その値を比較すると、いずれの地点においても秋季 から冬季にかけて char-EC/soot-EC が大きな値を示していることが見てとれる。この結果からも、秋季 ならびに冬季においては、バイオマス燃焼によって生成した粒子が都市大気中微小粒子に寄与してい ることが示唆された。

ここで本研究において、char-EC とレボグルコサンとの相関結果 (Fig. 7) により得られた回帰式において、切片分の char-EC をディーゼル自動車からの char-EC 排出分と仮定し、さらに観測期間中の soot-EC 平均濃度をディーゼル自動車からの排出と仮定した場合の char-EC/soot-EC 値を char-EC<sub>D</sub>/soot-EC<sub>D</sub> (char-EC<sub>D</sub>、soot-EC<sub>D</sub> はそれぞれディーゼル自動車排出由来を表す)として算出した。これらの仮定から、本研究におけるディーゼル自動車より排出される EC 成分における char-EC/soot-EC の算出が可能となる。算出にあたっては、秋冬においてレボグルコサンと char-EC と の相関の高かった Harumi と Shishibone の結果を用いた。さらに、これらの値を用いて char-EC に対するバイオマス燃焼寄与率 (Biomass Burning contribution; BB contribution) [%] の算出を行った。上記に ならい、回帰式における切片分の char-EC をディーゼル自動車由来の char-EC 排出量と仮定し、観測 期間中の soot-EC 平均濃度をディーゼル自動車からの排出 (soot-EC<sub>D</sub>) と仮定し、下記の関係式より算 出を試みた。それぞれの算出結果を Table 11 に示す。

char-EC<sub>BB</sub> = char-EC – char-EC<sub>D</sub> char-EC : 観測期間中における char-EC 平均濃度、char-EC<sub>BB</sub> : バイオマス燃焼由来 char-EC

BB contribution [%] =  $\frac{\text{char} - \text{EC}_{BB}}{\text{char} - \text{EC}} \times 100$ 

char-EC<sub>D</sub>/soot-EC<sub>D</sub>の値はCaoやHanらによって求められている値と比較すると、本研究により求めた値の方がかなり大きな値を示していることが見て取れる。また、char-ECに対するバイオマス燃焼寄与率は、秋冬においてその割合が5~6割と高い割合を占める結果となった。バイオマス燃焼寄与率に関しては後述する。

Table 11. char-EC<sub>D</sub>/soot-EC<sub>D</sub> coefficients and BB contributions

|                       | Harumi |        | Shishibone |        |
|-----------------------|--------|--------|------------|--------|
|                       | Autumn | Winter | Autumn     | Winter |
| $char-EC_D/soot-EC_D$ | 2.30   | 1.28   | 1.83       | 1.97   |
| BB contribution [%]   | 48.6   | 67.6   | 53.5       | 49.0   |

#### 3.4. HYSPLIT Model を用いた後方流跡線解析

前述のように、レボグルコサンと相関を示す各成分の濃度変化が、地点間で類似した傾向を示すといった結果を受けて、観測場所近隣における局所的な発生源影響よりも他地点からの移流影響などの広域的な影響が、各種成分濃度変化に寄与している可能性が推測された。このため、期間中におけるHYSPLIT Model (HYbrid Single-Particle Lagrangian Integrated Trajectory Model) (NOAA, 2003) による後方流跡線解析結果を Fig. 8 (地上 10 m) に示す。



Fig. 8. Backward trajectories by the HYSPLIT model in the different seasons (AGL;10 m) (NOAA, 2003).

一般的に春や秋は、低気圧や移動性高気圧(長江気団)が交互に通過していくことから、天気が周 期的に変わることが知られている。低気圧の通過前には南風が強まり気温が上昇し、通過後は北風が 強まり気温が低下する。また、これらの季節においては長江気団によって黄砂の飛来が確認されるな ど、中国大陸からの移流影響も見られる点が特徴的である。

夏の日本は小笠原気団(太平洋気団)に覆われて、南高北低型の気圧配置をとることが多い。この ような気圧配置をとることにより、南よりの季節風が卓越するようになるが、それほど強い風ではな い。HYSPLITによる結果においても、南風が卓越し、比較的近距離からの移流を受けていることが見 て取れる。冬はシベリア内陸に強い高気圧(シベリア高気圧)が発達し、日本の東の海上には低気圧 が発達することから、西高東低の気圧配置になる。日本では、シベリア高気圧から吹き出す北西の季 節風が卓越するようになる。

Fig. 8 より、春季ならびに夏季においては上記に示すとおりの一般的な傾向(春季:主に南側、時 に中国大陸からの移流、夏季:主に南側からの移流)が見られ、秋季から冬季にかけて北西からの移 流影響がそれぞれ卓越しているのが見て取れる。



Fig. 9. Results of FIRMS in the four seasons (NASA, 2010).

ここで、FIRMS (The Fire Information for Resource Management System; FIRMS (NASA, 2010)) によるサ ンプリング期間中におけるホットスポットマップを Fig. 9 に示す。地図上に示されたオレンジ色のス ポットが衛星によりホットスポットとして捉えられたことを意味し、距離分解能は1km である。

日本においては夏季においてホットスポットが最も多く検出されており、続いて春季と冬季が同等 程度、そして秋季ではほとんど検出されていない。一方のアジア諸国では、春季から秋季にかけて、 いずれもまばらにホットスポットが検出されているが、冬季では特に中国南部ならびに東南アジア諸 国にて多く検出されている。FIRMS による観測では衛星からの熱的異常を検出し、これを地図上にマ ッピングすることでホットスポットマップを得ているため、検出したホットスポットがバイオマス燃 焼であるとは断定できないが、本研究ではこれらスポットをバイオマス燃焼としてみなした。しかし、 このようにして考えた場合、日本における夏季にてバイオマス燃焼が盛んに行われているにも関わら ず、夏季におけるレボグルコサン濃度に変動は見られていない (Fig. 3)。この原因としては、①夏季 における混合層高度は秋季や冬季と比べてかなり高く、拡散が大きいこと、②レボグルコサンは極性 有機粒子でありかつ WSOC であるため、夏においては湿性沈着を起こしやすいこと、③夏季において はクリーンな海洋性気団が卓越し、そのほとんどが南側からの移流となること、④夏季においては光 化学反応による影響が高くなり、生成した OH ラジカルによるレボグルコサンの分解が考えられる (Hoffman et al. (2010)) 。Hoffman et al.によると、OH ラジカルとの反応により、夏季では 7.2 ng/m<sup>3</sup>h、 冬季では 4.7 ng/m<sup>3</sup>hの減少率でレボグルコサンが分解するとの報告がされている。また、バイオマス 燃焼が夏季と比較して盛んではない冬季に対しては、混合層高度が低く、逆転層の形成が起こりやす いことから高濃度化し、レボグルコサンの経日変動に示すような変化ならびに季節中平均濃度の増加 が見られたものと推測できる。混合層高度が冬よりも低い秋においてレボグルコサンの変動ならびに 平均濃度が冬よりも低いことの要因としては、冬季と比較してもバイオマス燃焼が盛んに行われてい ないこと、さらにアジア諸国からの移流影響が小さいことが考えられる。

秋季と冬季におけるレボグルコサンを始めとした PM<sub>25</sub> 成分のアジア諸国からの移流影響が、 HYSPLIT による結果からも推測されたため、その影響について記す。HYSPLIT の結果において、秋 季ならびに冬季における北西からの長距離にわたる移流影響が見られる日にち(Fig. 8 内の日にち記 載日)と、PM<sub>25</sub>濃度やレボグルコサン濃度の経日変化において極大を示す日にちとが一致する日(秋 季:11/6、9、15、冬季:2/7、9、13)が見られる。さらに、これら長距離輸送が見られる日にちにお ける輸送高度は、大気境界層(およそ高度 2000 km 以下)よりも高く、高高度地点からの移流 が見られており、距離かつPM<sub>2.5</sub>の寿命 (**Fig. 10**) (Seinfeld and Pandis, 1998)、そしてレボグルコ サンの寿命を考慮した上で、日本への輸送が充 分考えられる距離だといえる。

サンプリング期間中における HYSPLIT 結果 によると、日本海を挟んだ国々、さらに長距離 では東南アジアを含むアジア諸国からの、日本 への長距離輸送も懸念されることから、アジア 諸国におけるバイオマス利用について触れてお く。Fig. 11 (Street *et al.*, 2003) は、アジア諸国に おける年間バイオマス消費量の概算とその内訳

を示したものである。この概算に従う と、最もバイオマスの消費が激しい国 として中国が挙げられ、インドや東南 アジア諸国が続く結果となっている。 さらに、バイオマス種の内訳を見てみ ると、インドネシアやミャンマーが代 表として挙げられるように、東南アジ アでは Savanna/Grassland や Forest の比 率が高くなっている。これは、焼畑農 業が盛んな地域であることを示唆して いる。一方、中国やインドでは Crop Residue の割合が高く、東南アジアとは 異なる特徴を示している。これら地域 では、農業活動によって発生した農業 廃棄物を、調理燃料ならびに暖房用燃 料といった家庭用の民生燃料として用 いられている結果を反映したものであ る。

HYSPLIT 結果では、秋冬における中 国からの移流影響が懸念され、また、 中国にいてバイオマス燃焼が盛んに行 われることが示唆された。このことを



Fig. 10. Atmospheric lifetime and  $PM_{2.5}$  transport range (Seinfeld and Pandis, 1998).



Fig. 11. Estimates of the amounts of vegetation burned annually, by country and biomass type (Street *et al.*, 2003).

受けて、Han et al. (2009)、Wang et al. (2006) により中国各都市において夏季ならびに冬季にて行われ た一斉サンプリング結果から、char-EC、soot-EC、OC 成分についてまとめた結果を Fig. 12 (Han et al., 2009) に示す。Han et al.は、中国における char-EC の排出は、バイオマス燃焼ならびに石炭燃焼による ものが主であるとし、冬季において char-EC 濃度ならびに char-EC/soot-EC 値が高い値を示している。 これは、冬季において暖房用の民生燃料としての需要が高くなるためであるとし、特に中国東北部に おける農業地帯では農業廃棄物をバイオマス燃料として用いているためであるとしている。

これらのことから、中国において発生した char-EC やレボグルコサンを含む PM<sub>25</sub>が偏西風の影響を 受けて長距離輸送されることにより、都内におけるサンプリング結果に影響を及ぼしていたことが懸 念された。



Fig. 12. Spatial distributions of concentrations of total quantified (a) char-EC, (b) soot-EC, (c) char-EC/soot-EC, and (d) OC during summer and winter (Han *et al.*, 2009).

3.5. バイオマス燃焼寄与率の推定

バイオマス燃焼に伴うレボグルコサン発生量は、バイオマス中のセルロース含有率に比例すること が報告されている。このことから、バイオマス燃焼に際して用いる燃料によってその排出量が変化す るといえる。Hoch et al. (2007)のバイオマス中セルロース含有率のまとめによると、木材:40~45%、 麦わら:35~40%、草:30~35%、葉:15~20%としている。このように、用いる燃料種によりレボ グルコサンの排出量も変化することから、レボグルコサンを用いてのバイオマス燃焼寄与率を計算す る際の係数も異なってくる。東京都内においては野焼きが禁止されており、都内におけるレボグルコ サン発生源としては、木材燃焼によるボイラーの利用、喫煙所が主として挙げられる(東京都,2011)。 また、近隣の県ならびに中・長距離(北関東・中国)からの移流影響も無視できないと考えられる。

Table 12 に、他の研究により算出されたレボグルコサン排出係数をそれぞれ示す。Zhang et al. (2007)、 Sheesley et al. (2003)、Sullivan et al. (2008)によって報告されている数値はバイオマス燃料種やサンプ リング場所は異なるが、OC 中に含有するレボグルコサン割合は 3.1-3.7 %までを示している。一方で、 Graham et al. (2002)は TC 中におけるレボグルコサン割合を算出し、その値は 6 % であるとしている。 本研究では、Graham et al.の仮定のもと、都内におけるバイオマス燃焼寄与率を算出した。その結果を Table 13 に示す。

Table 12. Emission factors of levoglucosan (LG) as a fraction of OC and TC from different combustion studies

| Biomass type                                                   | Experiment type  | Source location<br>(mesured PM type) | Emission factor   | ref                    |
|----------------------------------------------------------------|------------------|--------------------------------------|-------------------|------------------------|
| Cereal straw                                                   | Dilution chamber | China (PM <sub>2.5</sub> )           | 3.7 % (AVG LG/OC) | Zhang et al. (2007)    |
| Rice straw, cowdung, briquettes, leaves and jackfruit branches | Wood stove       | South Asia (PM <sub>2.5</sub> )      | 3.5 % (AVG LG/OC) | Sheesley et al. (2003) |
| Rice straw                                                     | Chamber          | Taiwan (PM <sub>2.5</sub> )          | 3.5 % (AVG LG/OC) | Sullivan et al. (2008) |
| Branches, grasses, duffs, needles, straw, leaves               | Chamber or stack | USA (PM <sub>2.5</sub> )             | 3.1 % (AVG LG/OC) | Sullivan et al. (2008) |
| Pasture, wood, charcoal,                                       | -                | Brasil (PM <sub>2.5</sub> )          | 6 % (AVG LG/TC)   | Graham et al. (2002)   |

|            | Spring | Summer | Autumn | Winter |
|------------|--------|--------|--------|--------|
| Harumi     | 0.7    | 1.1    | 5.6    | 25     |
| Oji        | 0.4    | 1.1    | 3.3    | 21     |
| Shishibone | 1.1    | 0.5    | 5.5    | 11     |
| Shinkawa   | 1.1    | 0.2    | 5.7    | 15     |
| Kunitachi  | 1.8    | 0.3    | 7.3    | 3.2    |
| Oume       | 1.3    | -      | 4.8    | 5.4    |
| Machida    | 1.6    | -      | 6.2    | -      |

Table 13. Contribution of biomass-burning to TC (%) by season

Table 13の結果では、春季では0.4-2%、夏季では0.2-1.1%、秋季では3.3-7.3%、冬季では3.2-25%と、秋季ならびに冬季においてバイオマス燃焼寄与が春季や夏季のいずれの地点でも高い傾向が 観察された。また、地点間におけるバイオマス燃焼寄与率を比較すると、秋季においては地点間によ る大きな差は見られなかったが、冬季においては23区部内においてもHarumiやOjiにて寄与率約20% と高い寄与率を示し、一方の多摩部である Kunitachi、Oume においては低い値を示す結果となった。 バイオマス燃焼の寄与が高いとされる秋冬において Table 11 の結果と比較すると、Table 11 では char-EC に対するバイオマス燃焼寄与率であるが秋冬ともに約5~6割と高い寄与率を示していた。双 方とも仮定に基づいての算出結果ではあるが、Takahashi et al. (2007)の報告では、冬季における東京 都心において全炭素の約 50 %がバイオマス由来であると報告されている。Hagino et al. (2006)の報告 では、冬季におけるさいたま市において全炭素 (Total Carbon; TC) の約 30%がバイオマス由来と推定 している。これらのことから、燃焼寄与率の算出にあたっては、更なる議論が必要であると考えられ るが、共通して言えることは、バイオマス燃焼寄与が見られた秋冬において、バイオマス由来粒子の 排出抑制も今後考慮する必要性があるといえる。

3.6. PM2.5 発生源調査サンプルにおけるレボグルコサン等の分析結果

PM25の発生源別寄与割合を推定するためには、発生源から排出される有機粒子等の成分構成を把握 し、炭素成分ならびにイオン成分等の関係を考察する必要がある。特に、バイオマス燃焼指標物質で あるレボグルコサンが各発生源からどの程度排出されているかを把握することは、今後の都内におけ るバイオマス燃焼寄与割合の推定において必要であるといえる。

各排出源からの PM25 サンプルにおけるレボグルコサン、OC、char-EC、soot-EC の排出濃度をまと めたものを Fig. 13 と Table 14 に、さらにバイオマス燃焼に伴って排出することが知られている CI、 K<sup>+</sup> (Andreae, 1983; Chacier et al., 1995; William et al., 1999) とレボグルコサンとの排出濃度を比較した ものを Fig. 14 にそれぞれ示す。



Fig. 13. Levoglucosan, char-EC and soot-EC concentrations by each source.



Fig. 14. Levoglucosan, K<sup>+</sup> and Cl<sup>-</sup> concentrations by each source.

ボイラー(木くず)、野焼き、喫煙所、地下 街においてはレボグルコサンが顕著に検出され た。これらの結果はレボグルコサンがバイオマ ス燃焼に伴って発生する成分であることから妥 当な結果であると考えられる。一方で、船舶、 ボイラー(重油)、調理排気、家庭台所排気とい った発生源においてもレボグルコサンは検出さ れたが、その濃度は他の発生源と比較すると極 めて低い値を示していた。

また、レボグルコサンとイオン成分(K<sup>+</sup>、CI) の関係では、バイオマス燃焼由来の発生源では イオン成分、レボグルコサンの両方とも検出で きたが、化石燃料燃焼由来ではイオン成分は検 出されず、レボグルコサンは微量、検出される 結果となった。

Table 14. Levoglucosan concentrations by each source

| Samula nama      | Levoglucosan |
|------------------|--------------|
| Sample name      | $[ng/m^3]$   |
| ボイラー (木くず)       | 73104        |
| 野焼き(稲わら)         | 300645       |
| 野焼き(雑草・剪定枝)      | 41203        |
| 船舶(発電機、A重油)      | 479          |
| ボイラー (重油)        | 12           |
| 喫煙所 (タバコ)        | 4281         |
| 地下街(通路、厨房、駐車場)   | 1677         |
| 調理排気             | 18           |
| 家庭台所排気           | 114          |
| 下水汚泥(セラミックフィルター) | 0            |
| 下水汚泥(EP)         | 0            |
| 都市ごみ(ストーカ炉)      | 3            |
| 都市ごみ(流動床炉)       | 0            |

#### 【参考文献】

- Andreae, M.O., 1983. Soot carbon and excess fine potassium: Long range transport of combustion derived aerosols, *Science*, **220**, 1148-1151.
- Cachier, H., Liousse, C., Buat-Menard, P., Gaudichet, A., 1995. Particulate content of savanna fire emissions, *Journal* of Atmospheric Chemistry, 22, 123-148.
- Cao, J.J., Lee, S.C., Ho, K.F., Fung, K., Chow, J.C., Watson, J.G., 2006. Characterization of roadside fine particulate carbon and its eight fractions in Hong Kong, *Aerosol and Air Quality Research*, **6**, 106–122.
- Cao, J.J., Wu, F., Chow, J.C., Lee, S.C., Li, Y., Chen, S.W., An, Z.S., Fung, K., Watson, J.G., Zhu, C.S., Liu, S.X., 2005. Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2005 in Xi'an, China, *Atmospheric Chemistry and Physics*, 5, 3127–3137.
- Chow, J.C., Watson, J.G., Kuhns, H.D., Etyemezian, V., Lowenthal, D.H., Crow, D.J., Kohl, S. D., Engelbrecht, J.P., Green, M.C., 2004. Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational (BRAVO) Study, *Chemosphere*, 54, 185–208.
- Draxler, R.R., Rolph, G.D., 2003. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model, NOAA Air Resources Laboratory, Silver Spring, MD (http://www.arl.noaa.gov/ready/hysplit4.html) .
- Duan, F., Liu, X., Yu, T., Cachier, H., 2004. Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing, *Atmospheric Environment*, **38**, 1275-1282.

- Frenklach, M., 2002, Reaction mechanism of soot formation in flames, *Physical Chemistry Chemical Physics*, 4, 2028–2037,.
- Graham, B., Mayol-Bracero, O.L., Guyon, P., Roberts, G.C., Decesari, S., Facchini, M.C., Artaxo, P., Maenhaut, W., Köll, P., Andreae, M.O., 2002, Water-soluble organic compounds in biomass burning aerosols over Amazonia 1. Characterization by NMR and GC-MS, *Journal of Geophysical Research*, **107** (D20), doi:10.1029/2001JD000336.
- 萩野浩之,小瀧美里,坂本和彦,2006. さいたま市における初冬季の微小粒子中のレボグルコサンと炭素成 分, エアロゾル研究,21,38-44.
- Hoffmann, D., Tilgner, A., Iinuma, Y., Herrmann, H., 2010, Atmospheric Stability of Levoglucosan: A Detailed Laboratory and Modeling Study, *Environmental Science and Technology*, **44**, 694-699.
- Han, Y.M., Cao J.J., Chow J.C., Watson, J.G., An, Z.S., Jin, Z.D., Fung, K., Liu, S., 2007. Evaluation of using thermal/optical reflectance method to discriminate between soot- and char-EC. *Chemosphere*, 69, 569–574.
- Han, Y.M., Lee, S.C., Cao J.J., Ho, K.F., An, Z.S., 2009. Spatial distribution and seasonal variation of char-EC and soot-EC in the atmosphere over China, *Atmospheric Environment*, **43**, 6066-6073.
- Han Y.M., Cao J.J., Chow J.C., Lee, S.C., Ho, K.F, An, Z.S., 2010. Different characteristics of char and soot in the atmosphere and their ratio as an indicator for source identification in Xi'an, China, *Atmospheric Chemistry and Physics*, **10**, 595–607,.
- Khalil, M.A.K., Rasmussen, R.A., 2003, Tracers of wood smoke, Atmospheric Environment, 37, 1211-1222.
- 森川 多津子, 伊藤 献一, 1990. メタノール自動車排気ガスが光化学オキシダント生成におよぼす影響: One-Box モデルによる検討. 北海道大学工学部研究報告, 149, 71-81.
- National Aeronautics and Space Administration (NASA), 2010. The Fire Information for Resource Management System (FIRMS) (http://maps.geog.umd.edu/firms/readmore.html) .
- Pio, C.A., Harrison R.M., 1987. The equilibrium of ammonium chloride aerosol with gaseous hydrochloric acid and ammonia under tropospheric conditions, *Atmospheric Environment*, **21**, 2711–2715.
- Sakamoto, K., Wang, Q.Y., Kimijima, K., Okuyama, M., Mizuno, T., Yoshikado, H., Kaneyasu, N., 1994. Spatial distributions of ambient aerosol acidity in early winter at south-Kanto area, *Japan Environmental Science*, 7, 237–244.
- 坂本 和彦, 王 青躍, 水野 建樹, 吉門 洋, 兼保 直樹, 1998. 南関東平野における初冬季の大気粒子状物質 中の塩化物の挙動と起源, エアロゾル研究, 13, 216-221.
- Seinfeld, J.H., Pandis, S.N., 1998. Atmospheric chemistry and physics, Wiley Inter-sci.
- Sheesley, R.J., Schauer, J.J., Chowdhury, Z., Cass, G.R., Simoneit, B.R.T., 2003. Characterization of organic aerosols emitted from the combustion of biomass indigenous to South Asia, *Journal of Geophysical Research*, **108** (D9), doi:10.1029/2002JD002981.
- Schneider, J., Hock, N., Weimer, S., and Borrmann, S., 2005, Nucleation particles in diesel exhaust: composition Inferred from in situ mass spectrometric analysis, *Environmental Science and Technology*, **39**, 6153-6161.
- Simoneit, B.R.T., Schauer, J.J., Nolte, C.G., Oros, D.R., Elias, V.O., Fraser, M.P., Rogge, W.F., Cass, G.R., 1999. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles, *Atmospheric Environment*, 33, 173–182.
- Streets, D.G., Yarber, K.F., Woo, J.-H., Carmichael, G.R., 2003. Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions, *Global Biogeochemical Cycles*, **17** (4), 1099, doi:10.1029/2003GB002040.
- Sullivan, A.P., Holden, A.S., Patterson, L.A., McMeeking, G.R., Kreidenweis, S.M., Malm, W.C. Hao, W.M., Wold, C.E., Collett, Jr, J.L., 2008. A method for smoke marker measurements and its potential application for determining the contribution of biomass burning from wildfires and prescribed fires to ambient PM<sub>2.5</sub> organic carbon,. *Journal of Geophysical Research*, **113** (D22302), doi:10.1029/2008JD010216.
- Takahashi, K., Hirabayashi, M., Tanabe, K., Shibata, Y., Nishikawa, M., Sakamoto, K., 2007. Radiocarbon Content in Urban Atmospheric Aerosols., *Water Air Soil Pollute*, **185**, 305–310.
- 東京都,2011. 微小粒子状物質 (PM<sub>2.5</sub>) 等排出インベントリ報告書(案).
- Wang, G., Kawamura, K., Lee, S.C., Ho, K., Cao, J.J., 2006. Molecular, seasonal, and spatial distributions of organic aerosols from fourteen Chinese cities, *Environmental Science and Technology*, 40, 4619–4625.
- William, C.K., M., Aslam, K.K., David, J.E.III., Archie M.C., Thomas E.G., 1999. Composite global emissions of reactive chlorine from anthropogenic and natural sources: reactive chlorine emissions inventory, *Journal of Geophysical Research*, **104**, 8429–8440. doi:10.1029/1998JD100084
- Zhang, T., Claeys, M., Cachier, H., Dong, S., Wang, W. and co-authors. 2008. Identification and estimation of the biomass burning contribution to Beijing aerosol using levoglucosan as a molecular marker. *Atmospheric Environmental*, 42, 7013–7021.
- Zhang, Y.X., Shao, M., Zhang, Y.H., Zeng, L.M., He, L.Y., Zhu, B., Wei, Y.J., Zhu, X.L., 2007. Source profiles of particulate organic matters emitted from cereal straw burnings, *Journal of Environmental Sciences*, 19, 167-75.
- National Aeronautics and Space Administration (NASA), 2010. The Fire Information for Resource Management System (FIRMS), (http://maps.geog.umd.edu/firms/readmore.html).

微小粒子状物質検討会

研究成果報告書

# 放射性炭素同位体測定に基づく<br/> 微小粒子状物質の起源に関する研究

独立行政法人 国立環境研究所 化学環境研究領域

## 内田 昌男

#### 1 目的

本研究では、SPM の中でも特に人体への健康影響の可能性が懸念される PM<sub>2.5</sub> について、 放射性炭素同位体比(<sup>14</sup>C/<sup>12</sup>C)を測定することで、東京都におけるその発生源の寄与率(バ イオマス起源、化石燃料起源)の特徴について調査することを目的とした。東京都が行う 従来の金属濃度、イオン濃度に基づく CMB 法による排出源解析結果と併せて検討するこ とで、微小粒子状物質発生源解析の精度向上が期待される。

#### 2 大気微小粒子の放射性炭素同位体比測定

大気微小粒子の起源を推定する方法として、炭素同位体比を測定する方法がある。大気中の二酸化炭素(CO<sub>2</sub>)には、宇宙線の影響による核反応により、常に一定量の放射性炭素同位体(<sup>14</sup>C)が存在する一方、宇宙線の影響を受けない地殻中の化石炭素には<sup>14</sup>C は存在していない。また、大気 CO<sub>2</sub> を吸収することで成長する植物等のバイオマス炭素には、大気 CO<sub>2</sub> と同様、一定量の<sup>14</sup>C が存在している。したがって、大気微小粒子の放射性炭素同位体比を測定することで、化石燃料(石炭、石油、天然ガス)起源およびバイオマス(現世植物)起源の炭素量の寄与率を算出することが可能である。

したがって、従来の金属・イオン濃度に基づくケミカル・マス・バランス(CMB)法で は推定できなかった植物由来の揮発性有機化合物(VOC)(テルペン等)やそれらの二次 生成粒子の寄与率についても推定できるものと思われる。特に、捕集した大気微小粒子を 元素状炭素(EC)と有機炭素(OC)に分離し、それらを別々に放射性炭素分析すること で、これまで得ることの出来なかった粒子の発生源の情報について、より精緻な知見を得 ることができるものと予想されている(表 1)。

|       | 生成過程         | 元素状炭素(EC)     | 有機炭素(OC)      |  |
|-------|--------------|---------------|---------------|--|
|       |              | 自動車排ガス、重油ボイラ、 | 自動車排ガス、重油ボイラ、 |  |
|       | 燃焼           | ごみ焼却、野焼き、     | ごみ焼却、野焼き、     |  |
| 化乙酸彩  |              | 厨房排気等         | 厨房排気 等        |  |
| 化石燃料  |              |               | ガソリンスタンド、自動車等 |  |
|       | 揮発           | なし            | からの燃料揮発       |  |
|       |              |               | 工場等からの溶媒揮発    |  |
|       | 做店           | ごみ焼却、野焼き、     | ごみ焼却、野焼き、     |  |
| バイオマス | <i>水</i> 心分亡 | 厨房排気等         | 厨房排気 等        |  |
|       | 「田政          | +> 1          | テルペン等植物由来の揮発  |  |
|       | 1年7七         |               | 性有機化合物(VOC)   |  |

表1. 放射性炭素同位体分析により分画可能な大気微小粒子の主な発生源

注釈:OCに関しては、それらの二次生成物質も含む

#### 3 結果・考察

#### 3. 1. TC

3.1.1.TC 濃度

表 2 に各測定局における TC 濃度を示す。一般局および自排局における TC 濃度の平均 は、それぞれ 3.63 ± 0.47  $\mu$ g/m<sup>3</sup> (n = 6)、4.49 ± 0.50  $\mu$ g/m<sup>3</sup> (n = 6) であり、統計的に有意な 差が確認された (p = 0.01; t 検定)。

| 一般局    | TC ( $\mu g/m^3$ ) | 自排局     | TC ( $\mu g/m^3$ ) |
|--------|--------------------|---------|--------------------|
| 港区白金   | 3.11               | 京葉道路亀戸  | 3.91               |
| 中央区晴海  | 3.68               | 中原口交差点  | 4.58               |
| 足立区綾瀬  | 3.91               | 甲州街道大原  | 4.26               |
| 青梅市東青梅 | 3.15               | 北本通り王子  | 4.37               |
| 多摩市愛宕  | 3.60               | 連雀通り下連雀 | 4.41               |
| 町田市中町  | 4.35               | 甲州街道国立  | 5.40               |
| 平均     | 3.63               | 平均      | 4.49               |
| 標準偏差   | 0.47               | 標準偏差    | 0.50               |

表 2. 各測定局における総炭素 (TC) 濃度の年平均値

3. 1. 2. TC *O* pMC

表3に各測定局で捕集した  $PM_{2.5}$ の pMC の年平均値を示す。一般局および自排局における pMCの平均は、それぞれ 54.5 ± 6.5 pMC (n = 6)、45.3 ± 5.8 pMC (n = 6) であり、統計的に有意な差が確認された (p = 0.03; t 検定)。このことから、自排局における低い pMCは、ガソリンや軽油などを燃料とする自動車からの排出粒子によるものと示唆された。一方、一般局では  $PM_{2.5}$ に含まれる TC のうち、半分以上(約55%)がバイオマス起源のものであることが分かった。

| 一般局    | pMC  | 自排局     | pMC  |
|--------|------|---------|------|
| 港区白金   | 59.0 | 京葉道路亀戸  | 46.8 |
| 中央区晴海  | 44.3 | 中原口交差点  | 38.5 |
| 足立区綾瀬  | 51.4 | 甲州街道大原  | 44.5 |
| 青梅市東青梅 | 63.1 | 北本通り王子  | 40.7 |
| 多摩市愛宕  | 52.7 | 連雀通り下連雀 | 55.3 |
| 町田市中町  | 56.4 | 甲州街道国立  | 45.7 |
| 平均     | 54.5 | 平均      | 45.3 |
| 標準偏差   | 6.5  | 標準偏差    | 5.8  |

表 3. 各測定局における微小粒子状物質の pMC の年平均値

#### 3.1.3. TC の石油燃料起源およびバイオマス起源炭素濃度

前項の TC 濃度および pMC より、各測定局における化石燃料起源炭素およびバイオマス 起源炭素の濃度を計算した(表 4)。また、図 1、2 に一般局および自排局における各炭素 濃度の空間分布をそれぞれ示す。一般局および自排局における化石燃料起源炭素の濃度は、 それぞれ 1.66 ± 0.36 µg/m<sup>3</sup> (n = 6)、2.46 ± 0.39 µg/m<sup>3</sup> (n = 6) であり、統計的に有意な差が 確認された (p = 0.005; t 検定)。一方、一般局および自排局におけるバイオマス起源炭素 の濃度は、それぞれ 1.97 ± 0.27 µg/m<sup>3</sup> (n = 6)、2.03 ± 0.33 µg/m<sup>3</sup> (n = 6) であり、統計的に 有意な差は確認されなかった (p = 0.75; t 検定)。このことから、自排局における炭素性粒 子濃度の増加は、自動車からの排出粒子を含む化石燃料起源炭素によることが確認された。 また、放射性炭素同位体測定により、自動車排出粒子の影響をより感度高く評価可能なこ とが再確認された。

一方、一般局においては、化石燃料起源炭素の濃度(1.7 µg/m<sup>3</sup>)より、高濃度のバイオ マス起源炭素(2.0 µg/m<sup>3</sup>)が存在することが分かった。ディーゼル車規制などの努力によ り化石燃料起源炭素の寄与割合が低減したとともに、その他の発生源が相対的に重要にな ってきていることが示唆された。

| 一般局    | 化石燃料 | バイオマス | 自排局     | 化石燃料 | バイオマス |
|--------|------|-------|---------|------|-------|
| 港区白金   | 1.28 | 1.84  | 京葉道路亀戸  | 2.08 | 1.83  |
| 中央区晴海  | 2.05 | 1.63  | 中原口交差点  | 2.82 | 1.76  |
| 足立区綾瀬  | 1.90 | 2.01  | 甲州街道大原  | 2.36 | 1.90  |
| 青梅市東青梅 | 1.16 | 1.99  | 北本通り王子  | 2.59 | 1.78  |
| 多摩市愛宕  | 1.70 | 1.90  | 連雀通り下連雀 | 1.97 | 2.44  |
| 町田市中町  | 1.90 | 2.45  | 甲州街道国立  | 2.93 | 2.46  |
| 平均     | 1.66 | 1.97  | 平均      | 2.46 | 2.03  |
| 標準偏差   | 0.36 | 0.27  | 標準偏差    | 0.39 | 0.33  |

表 4. 各測定局における化石燃料起源およびバイオマス起源炭素の年平均濃度(µg/m<sup>3</sup>)

#### 3. 2. EC

#### 3. 2. 1. EC 濃度

表 5 に各測定局における EC 濃度を示す。一般局および自排局における EC 濃度の平均 は、それぞれ 0.34 ± 0.06  $\mu$ g/m<sup>3</sup> (n = 5)、0.38 ± 0.07  $\mu$ g/m<sup>3</sup> (n = 5) であり、統計的に有意な 差は確認されなかった (p = 0.48; t 検定)。

| 一般局    | EC ( $\mu g/m^3$ ) | 自排局     | EC ( $\mu g/m^3$ ) |
|--------|--------------------|---------|--------------------|
| 港区白金   | 0.30               | 京葉道路亀戸  | 0.30               |
| 中央区晴海  | 0.33               | 中原口交差点  | 0.43               |
| 足立区綾瀬  | 0.28               | 甲州街道大原  | 0.30               |
| 青梅市東青梅 | 0.38               | 北本通り王子  | 0.46               |
| 多摩市愛宕  | 0.43               | 連雀通り下連雀 | 0.39               |
| 平均     | 0.34               | 平均      | 0.38               |
| 標準偏差   | 0.06               | 標準偏差    | 0.07               |

表 5. 各測定局における元素状炭素 (EC) 濃度の平均値

注釈:各測定局で季節ごとに複数回捕集が行われたが、本表ではそのうち炭素同位体解析 が完了した一部の試料のみを集計

#### 3. 2. 2. EC O pMC

表 6 に各測定局で捕集した EC の pMC の年平均値を示す。一般局および自排局における pMC の平均は、それぞれ 23.3 ± 3.6 pMC (n = 5)、21.9 ± 6.1 pMC (n = 5) であり、統計的 に有意な差は確認されなかった (p = 0.67; t 検定)。

|        |      | -       |      |
|--------|------|---------|------|
| 一般局    | pMC  | 自排局     | pMC  |
| 港区白金   | 25.7 | 京葉道路亀戸  | 26.5 |
| 中央区晴海  | 25.2 | 中原口交差点  | 15.6 |
| 足立区綾瀬  | 26.7 | 甲州街道大原  | 29.8 |
| 青梅市東青梅 | 19.1 | 北本通り王子  | 20.2 |
| 多摩市愛宕  | 19.6 | 連雀通り下連雀 | 17.3 |
| 平均     | 23.3 | 平均      | 21.9 |
| 標準偏差   | 3.6  | 標準偏差    | 6.1  |

表 6. 各測定局における EC の pMC の平均値

注釈: 各測定局で季節ごとに複数回捕集が行われたが、本表ではそのうち炭素同位体解析 が完了した一部の試料のみを集計 3. 3. OC

3. 3. 1. OC 濃度

表 7 に各測定局における OC 濃度を示す。一般局および自排局における OC 濃度の平均 は、それぞれ  $3.29 \pm 0.38 \mu g/m^3$  (n = 5)、 $4.04 \pm 0.73 \mu g/m^3$  (n = 6) であり、統計的に有意な 差は確認されなかったものの (p = 0.07; t 検定)、自排局のほうが高濃度であることが分か った。

| 一般局    | OC ( $\mu g/m^3$ ) | 自排局     | OC ( $\mu g/m^3$ ) |
|--------|--------------------|---------|--------------------|
| 中央区晴海  | 3.21               | 京葉道路亀戸  | 3.46               |
| 足立区綾瀬  | 3.44               | 中原口交差点  | 3.36               |
| 青梅市東青梅 | 2.87               | 甲州街道大原  | 3.85               |
| 多摩市愛宕  | 3.07               | 北本通り王子  | 5.13               |
| 町田市中町  | 3.87               | 連雀通り下連雀 | 3.67               |
|        |                    | 甲州街道国立  | 4.75               |
| 平均     | 3.29               | 平均      | 4.04               |
| 標準偏差   | 0.38               | 標準偏差    | 0.73               |

表 7. 各測定局における有機炭素 (OC) 濃度の平均値

注釈:各測定局で季節ごとに複数回捕集が行われたが、本表ではそのうち炭素同位体解析 が完了した一部の試料のみを集計

3. 3. 2. OC *O* pMC

表 8 に各測定局で捕集した OC の pMC の年平均値を示す。一般局および自排局における pMC の平均は、それぞれ 50.8 ± 6.6 pMC (n = 5)、42.2 ± 6.7 pMC (n = 6) であり、統計的 に有意な差は確認されなかったものの (p = 0.06; t 検定)、自排局のほう低い pMC である ことが分かった。

| 一般局    | pMC  | 自排局     | рМС  |
|--------|------|---------|------|
| 中央区晴海  | 41.1 | 京葉道路亀戸  | 44.7 |
| 足立区綾瀬  | 48.3 | 中原口交差点  | 36.4 |
| 青梅市東青梅 | 59.0 | 甲州街道大原  | 39.7 |
| 多摩市愛宕  | 53.0 | 北本通り王子  | 36.3 |
| 町田市中町  | 52.5 | 連雀通り下連雀 | 54.2 |
|        |      | 甲州街道国立  | 42.3 |
| 平均     | 50.8 | 平均      | 42.2 |
| 標準偏差   | 6.6  | 標準偏差    | 6.7  |

表8. 各測定局における OC の pMC の平均値

注釈: 各測定局で季節ごとに複数回捕集が行われたが、本表ではそのうち炭素同位体解析 が完了した一部の試料のみを集計 3. 3. 3. OC の石油燃料起源およびバイオマス起源炭素濃度

前項の OC 濃度および pMC より、各測定局における化石燃料起源炭素およびバイオマス 起源炭素の濃度を計算した(表9)。一般局および自排局における化石燃料起源炭素の濃度 は、それぞれ 1.62±0.31 µg/m<sup>3</sup> (n=5)、2.34±0.58 µg/m<sup>3</sup> (n=6) であり、統計的に有意な 差が確認された (p=0.04; t 検定)。一方、一般局および自排局におけるバイオマス起源炭 素の濃度は、それぞれ 1.67±0.25 µg/m<sup>3</sup> (n=5)、1.69±0.31 µg/m<sup>3</sup> (n=6) であり、統計的 に有意な差は確認されなかった (p=0.87; t 検定)。このことから、自排局における高濃度 の炭素性粒子は、化石燃料起源の OC が原因であることが分かった。化石燃料起源の OC は、ガソリンスタンドや自動車からの燃料揮発が発生源として含まれる。一方、燃焼生成 のみを発生源とする EC については、一般局と自排局で濃度差は確認されなかった。した がって、自排局における高濃度の炭素性粒子は、自動車からによるものと予想される。

| 一般局    | 化石燃料 | バイオマス | 自排局     | 化石燃料 | バイオマス |
|--------|------|-------|---------|------|-------|
| 中央区晴海  | 1.89 | 1.32  | 京葉道路亀戸  | 1.91 | 1.55  |
| 足立区綾瀬  | 1.78 | 1.66  | 中原口交差点  | 2.14 | 1.22  |
| 青梅市東青梅 | 1.18 | 1.69  | 甲州街道大原  | 2.32 | 1.53  |
| 多摩市愛宕  | 1.44 | 1.62  | 北本通り王子  | 3.27 | 1.86  |
| 町田市中町  | 1.84 | 2.03  | 連雀通り下連雀 | 1.68 | 1.99  |
|        |      |       | 甲州街道国立  | 2.74 | 2.01  |
| 平均     | 1.62 | 1.67  | 平均      | 2.34 | 1.69  |
| 標準偏差   | 0.31 | 0.25  | 標準偏差    | 0.58 | 0.31  |

表9. 各測定局における OC の化石燃料起源およびバイオマス起源炭素の平均濃度(µg/m<sup>3</sup>)

注釈:各測定局で季節ごとに複数回捕集が行われたが、本表ではそのうち炭素同位体解析 が完了した一部の試料のみを集計 3. 4. 発生源

表 10 に各発生源の PM<sub>2.5</sub>に占める TC の割合を示す。都市ごみ焼却炉、下水汚泥焼却炉 では、排出粒子中の TC 濃度は比較的小さく、粒子の 90%以上が非炭素性であることが分 かった。一方、地下街排気、厨房排気、重油ボイラでは、粒子の 70%以上が炭素性である ことが分かった。

表 11 に、各発生源からの排出粒子中の TC の pMC を示す。地下街排気、厨房排気では、 排出粒子中の TC のほとんどがバイオマス起源であることが分かった。一方、都市ごみ焼 却炉、下水汚泥焼却炉では、バイオマス起源炭素が 30% ~ 50%の割合で混合していること が分かった。また、重油ボイラから排出されている TC のほとんどは化石燃料起源炭素で あることが分かった。

| 種類       | TC/PM <sub>2.5</sub> |  |
|----------|----------------------|--|
| 地下街排気    | 0.73                 |  |
| 厨房排気(電気) | 0.76                 |  |
| 都市ごみ焼却炉  | 0.01                 |  |
| 下水汚泥焼却炉  | 0.09                 |  |
| 重油ボイラ    | 0.83                 |  |

表 10. 各発生源の PM2.5 に占める TC の割合

| 表 11. | 各発生源 | から | の排出粒子「 | 中の TC | 𝒪 pMC |
|-------|------|----|--------|-------|-------|
|-------|------|----|--------|-------|-------|

| 種類       | рМС   |
|----------|-------|
| 地下街排気    | 102.2 |
| 厨房排気(電気) | 103.1 |
| 都市ごみ焼却炉  | 54.9  |
| 下水汚泥焼却炉  | 29.5  |
| 重油ボイラ    | 0.8   |

#### 4 まとめ

今回の報告では、以下のことが分かった。

- (1) 一般局においては、微小粒子状物質に含まれる TC のうち、半分以上(約55%)が バイオマス起源であること分かった。また、化石燃料起源炭素の濃度が 1.7 µg/m<sup>3</sup> であるのに対し、バイオマス起源炭素は 2.0 µg/m<sup>3</sup>であった。ディーゼル車規制な どの努力により化石燃料起源炭素の寄与率が低減してきたと同時に、その他の発生 源が相対的に重要になってきていることが示唆された。
- (2) 自排局における高濃度の炭素性粒子は、化石燃料起源の OC が原因であることが分かった。一方、燃焼生成のみを発生源とする EC については、一般局と自排局で濃度差は確認されなかった。したがって、自排局における高濃度の炭素性粒子は、自動車からによるものと予想される。
- (3) 都市ごみ焼却炉、下水汚泥焼却炉では、排出粒子中における TC 濃度は比較的小さ く、粒子の 90%以上が非炭素性であることが分かった。一方、地下街排気、厨房 排気、重油ボイラでは、粒子の 70%以上が炭素性であることが分かった。
- (4) 地下街排気、厨房排気では、排出粒子中のTCのほとんどがバイオマス起源である ことが分かった。一方、都市ごみ焼却炉、下水汚泥焼却炉では、バイオマス起源炭 素が30%~50%の割合で混合していることが分かった。また、重油ボイラから排出 されているTCのほとんどは化石燃料起源炭素であることが分かった。



図1. 一般局における化石燃料起源およびバイオマス起源炭素濃度



図 2. 自排局における PM<sub>2.5</sub>粒子中 TC に含まれる化石燃料起源およびバイオマス起源炭素 濃度

微小粒子状物質検討会

研究成果報告書

# 各種排出源粉塵の鉛分析 -発生源解析への適用性の検討-

東京大学 新領域創成科学研究科

## 准教授 吉永 淳

各種排出源粉塵の鉛分析-発生源解析への適用性の検討

東京大学 新領域創成科学研究科

吉永 淳

1. はじめに

大気粉塵の発生源解析において、大気粉塵の化学組成(金属成分、イオン成分、有機化合物 等)を指標とした方法が用いられている。こうした方法では、各種潜在的発生源の粉塵の化学組成 が明確になっていることが必須である。潜在的発生源毎に粉塵の化学組成が他と大きく異なれば 異なるほど、発生源指標として有効となる。

近年、炭素同位体比など、発生源解析のための有効な指標が見いだされてきた。今回新たな指標を探索することを目的とし、鉛の安定同位体比に着目した。鉛の安定同位体比は、わが国ではこれまでにも大陸由来の鉛汚染の判別に利用されてきた(Mukai et al., 1994)ため、発生源解析にも利用できる可能性があるが、特定の地域内での発生源解析に利用可能であるかどうかの情報はない。そこで各種排出源からの粉塵(SPM)の鉛安定同位体比を測定し、排出源毎に異なる同位体比をもつかについて検討することとした。

2. 方法

東京都 微小粒子状物質(PM<sub>2.5</sub>)等大気環境調査の一環として行われた、平成 20 年度排出源 調査で採取された粉塵の提供を受けた。粉塵試料はポリフロンフィルター上に捕集されたもので、 1 枚のフィルターを 1/4~1/2 に切断したものである。調査計画に基づき、放射化分析による金属 分析が終了し、放射能値の十分低下した17 試料を鉛分析に用いた。今回の測定では SPM 試料を 用いた。

SPM の捕集されたフィルターごとテフロンビーカーにとり、HNO<sub>3</sub>/HClO<sub>4</sub>/HF による混酸分解を 行い、粉塵を溶液化した。分解液は乾固させた後、0.1%HNO<sub>3</sub>に溶解して試料とした。

分解試料は適宜希釈して、誘導結合プラズマ質量分析法(ICPMS)により、鉛、スズ濃度の測定 を行った。なお鉛、スズ濃度は、粉塵質量あたり及び排ガス 1m<sup>3</sup> あたりの濃度で求めた。分析の精 度管理は土壌の認証標準物質を用いて行った。

分解液を適宜希釈し、鉛濃度を 5 ng/g 程度として、ICPMS を用いて鉛安定同位体比 (<sup>207</sup>Pb/<sup>206</sup>Pb、<sup>208</sup>Pb/<sup>206</sup>Pb)の測定を行った。

3. 結果

3.1 排出源 SPM・排ガスの鉛及びスズ濃度(放射化分析では未測定)

今回分析した試料の鉛及びスズ濃度を表1に一覧し、図1、2に図示した。鉛については土壌、 厨房など天然系のSPM中濃度は低く、道路粉塵、焼却炉などはそれより一桁高く、くず鉄電気炉、 窯業炉では三桁濃度が高かった。SPM中スズはくず鉄電気炉が高かった他は、排出源毎に異なる 傾向は見られなかった。排気ガス中濃度に換算すると、ごみや汚泥焼却炉の鉛、スズ濃度は厨房 や家庭からの排出レベルと大差なく、くず鉄電気炉、窯業炉は高いレベルであったが、大気汚染 防止法における排出基準値(20,000  $\mu$ g/m<sup>3</sup>N)および東京都条例(10,000  $\mu$ g/m<sup>3</sup>N)よりも二桁低 い値であった。

|            | 粉塵中鉛濃度(mg/kg)        | 排ガス中鉛濃度(μg/m³) | 粉塵中スズ濃度(mg/kg) | 排ガス中スス <sup>*</sup> 濃度(μg/m <sup>3</sup> ) |
|------------|----------------------|----------------|----------------|--------------------------------------------|
| 土壤A        | 26                   |                | 14             |                                            |
| 土壤B        | 35                   |                | 4              |                                            |
| 土壤C        | 46                   |                | 35             |                                            |
| 土壤D        | 23                   |                | 2              |                                            |
| 道路粉塵A      | 206                  |                | 26             |                                            |
| 道路粉塵B      | 288                  |                | 45             |                                            |
| 道路粉塵C      | 133                  |                | 38             |                                            |
| 道路粉塵D      | 117                  |                | 6              |                                            |
| 地下街        | 55                   | 0.018          | 6              | 0.002                                      |
| 家庭台所       | 9                    | 0.011          | ND             | ND                                         |
| 厨房排気       | 37                   | 0.003          | ND             | ND                                         |
| ごみ焼却炉A     | 532                  | 0.041          | 55             | 0.004                                      |
| ごみ焼却炉B     | 321                  | 0.026          | 51             | 0.004                                      |
| 下水道汚泥焼却炉   | 283                  | 0.013          | 86             | 0.004                                      |
| ボイラ(LSA重油) | 90                   | 0.068          | 5              | 0.004                                      |
| 電気炉(くず鉄)   | 21.6x10 <sup>3</sup> | 4.38           | 690            | 140                                        |
| 窯業炉        | 10.3x10 <sup>3</sup> | 280            | 16             | 441                                        |

表1 排出源 SPM 中の鉛及びスズ濃度

#### 3.2 排出源 SPM の鉛安定同位体比

鉛安定同位体比を図3にプロットした。大きく分けると、図の左下の「土壌」「一般排気(厨房、家 庭台所など)」と右上の「道路粉塵」「ごみ焼却炉」「工業炉」である。左下は言うなれば「天然系」、 右上は何らかの人為的活動(ごみ焼却、自動車、工業など)に由来するので、「人為系」とみなすこ とができる。「天然系」は、土壌や食物などの燃焼に伴う鉛で、わが国特有の鉛同位体比が反映し ているものである。実際、これまでに報告されてきたわが国の土壌や岩石の鉛安定同位体比と、今 回測定した「土壌」の同位体比とはほぼ一致する。また「厨房排気」や「家庭からの排気」の鉛源は おそらく食物などの燃焼の結果生じた微粒子であると考えられ、食物の同位体比もほぼわが国の 土壌の同位体比と類似していることが知られている(植物の鉛同位体比には土壌の同位体比が反 映するから)。



図3 排出源 SPM の鉛安定同位体比の分布
「人為系」が「天然系」と異なる同位体比を示すのは、人為系には外国から輸入された物品に含まれる鉛(日本産の鉛とは同位体組成が異なる)が含まれるためであると考えられる。国内で工業的に使用される鉛の8割以上が海外からの輸入であると言われている。したがって人為系の鉛同位体比が日本産鉛のそれと異なるのは当然である。自動車のホイールバランスに鉛が使用されており、これが道路粉塵の鉛濃度が土壌より一桁高かった原因である可能性がある。もしそうだとすると、同位体比のデータを見る限り、バランスに使用されている鉛は国産ではないようである。一方、ごみ焼却場では、国内で使用されている各種の文物がすべて混じり合って燃焼している。そのフライアッシュの鉛安定同位体比は国内で使用されているさまざまな鉛含有物の同位体比の平均値であると考えられている(Mukai et al. 1993)。今回測定した2施設のごみ焼却場粉塵の同位体比はMukai et al. (1993)の報告した値ときわめて近い。

大気粉塵(SPM, PM<sub>2.5</sub>など)の発生源解析に鉛同位体比を利用できるか、という観点から図3を 見ると、天然系と人為系の発生源の寄与を別々に見積もることは可能かもしれないが、人為系のな かで、道路粉塵、ごみ焼却場、工業炉の鉛同位体比の分布は重複しており、しかも分布範囲が広 い。したがって鉛同位体比を使用した大気粉塵の発生源解析は、発生源の切り分けが限られる (天然 vs 人為 程度)うえ、大きな不確かさがありうると考えざるを得ない。

#### 4. 結論

排出源毎の鉛同位体比の分布が明瞭に異ならないので、鉛同位体比の測定によって大気粉塵 の発生源解析の精度を上げることは困難である。

#### 【文献】

Mukai H., Furuta N., Fujii T., Ambe Y., Sakamoto K., Hashimoto Y. (1993) Characterization of sources of lead in the urban air of Asia using ratios of stable lead isotopes. Environ Sci Technol 27: 1347–1356.

Mukai H., Tanaka A., Fujii T., Nakao M. (1994) Lead isotope ratios of airborne particulate matter as tracers of long-range transport of air pollutants around Japan. J Geophys Res 99: 3717–3726.

微小粒子状物質検討会

### 研究成果報告書

# **JATOP**大気観測について

(財)日本自動車研究所 エネルギ・環境研究部

## 森川 多津子

JATOP 大気観測について

#### 1. JATOPのPM<sub>2.5</sub>広域観測

JATOP(Japan Auto-Oil Program、経済産業省補助事業、2007年度~)では PM<sub>2.5</sub>の挙動を把握するため、夏季観測として、平成20(2008)年7月28日から8 月11日まで南関東7カ所(千葉県浦安市、東京都千代田区九段、さいたま市埼玉 大学構内、加須市騎西町埼玉県環境科学国際センター、東京都渋谷区代々木公 園、八王子市首都大学東京構内、つくば市国立環境研究所内)で、冬季観測とし て平成21(2009)年11月23日から12月9日まで南関東4カ所(千葉県浦安市、東京 都千代田区九段、さいたま市埼玉大学構内、加須市騎西町埼玉県環境科学国際 センター)で大気観測を実施した(図1-1)。



夏季観測(7ヶ所○+●) 冬季観測(4ヶ所○) 図1-1 観測地点

測定項目は、表1-1に示すようにデニューダによるガス・粒子同時捕集、 $PM_{2.5}$ フィルタ捕集、 $PM_{2.5}$ 化学成分のナイトレート( $NO_3$ )・サルフェート( $SO_4^{2^-}$ )・カ ーボン等の自動計測、NOx,  $O_3$ 等の前駆体ガス、VOC捕集、等である。

|         | フィル                 | ₩4 → .1 \> 44 | 質量                            | 湿度35%、50% 2                                               | 24時間調湿後に電子天秤法計測                |  |  |
|---------|---------------------|---------------|-------------------------------|-----------------------------------------------------------|--------------------------------|--|--|
|         |                     |               | <b>化光石</b>                    | 水溶性イオン                                                    | イオンクロマト分析                      |  |  |
|         |                     | 杜宁祆物          |                               | 炭素成分                                                      | IMPROVE法によるCarbon Profile計測    |  |  |
|         | タ採取                 | 貝             | 16字組成                         | 元素                                                        | 中性子放射化分析                       |  |  |
|         |                     |               |                               | その他                                                       | Levoglucosan分析、14C分析           |  |  |
| PM      |                     | ガス状物質         | デニューダ                         | 法による硝酸ガス、                                                 | アンモニア、塩素ガス計測                   |  |  |
|         |                     |               | 質量                            | TEOM法による連続                                                | 続計測                            |  |  |
|         |                     |               |                               | ナイトレート                                                    | ナイトレートモニタ                      |  |  |
|         | 自動計測                |               | 化学組成                          | サルフェート                                                    | サルフェートモニタ                      |  |  |
|         |                     |               |                               | 炭素成分                                                      | カーボンモニタによるEC,OC計測              |  |  |
|         |                     |               |                               | AMS (Aerosol Ma                                           | ss Spectrometer)によるPM1化学組成連続計測 |  |  |
|         | NO, NO <sub>2</sub> |               | 化学発光法による連続計測                  |                                                           |                                |  |  |
| ガス      | 0,                  |               | 紫外吸収法による連続計測                  |                                                           |                                |  |  |
|         | VOC                 |               | キャニスターによる大気採取とガスクロマトグラフによる分析  |                                                           |                                |  |  |
|         | 気温·湿度               |               | 半導体センサーによる連続計測                |                                                           |                                |  |  |
| 気象      | 風向·風速               |               | 超音波風速計による連続計測                 |                                                           |                                |  |  |
|         | 上空気象                |               | 低層ゾンデーによる風向・風速、温度・湿度計測 (夏季観測) |                                                           |                                |  |  |
| その<br>他 | ヘリコ                 | プター観測         | 上空の粒子                         | - 数濃度、NO, NO <sub>2</sub> , O <sub>3</sub> , VOC測定 (夏季観測) |                                |  |  |

表 1-1 観測項目

2. 観測期間中の汚染物質の輸送

南関東に約250局ある常時監視局の風向・風速のデータを用い、距離2乗法で 地表付近の風の流れを2次元情報として得た。これを利用して夏季と冬季の観 測期間中の汚染物質の輸送を考察した。

図2-1に夏季観測の期間の各測定点に至る後方流跡線解析の結果を示す。各図の下に示す日時は、気塊が各測定局に到達した日時を示し、流跡線の長さは24時間の移動距離を示す。PM<sub>2.5</sub>の24時間採取は平成20(2008)年7月29日9時に開始し、8月5日9時に終了した。この期間の前半は図に示すように東風が卓越していた。これが一転して8月2日9時に至る24時間前の流跡線は、南風に変わっている。この時点から7カ所の測定局でのPM<sub>2.5</sub>濃度も高濃度状態となり、採取したPM<sub>2.5</sub>成分は後述するようにSO<sub>4</sub><sup>2</sup>が多く含まれていた。



図2-1 平成20(2008)年夏季PM2.5 24時間採取観測期間前後の風の流れ

一方、平成21冬季の風の流れは、図2-2に示すように観測期間である平成21 年11月23日から12月7日にかけてほぼ北風を示していた。ただし、高濃度が観 測された11月27日、12月2日、5日(図中ハッチングした部分)の風向は、東風が やや入った状態であった。



図2-2 平成21(2009)年冬季PM2.5 24時間採取観測期間前後の風の流れ

3. PM<sub>2.5</sub>質量濃度

夏季と冬季とでは卓越風向が大きく異なる。しかしPM<sub>2.5</sub>質量濃度は、図3-1 に示すように、浦安から騎西までの4局間で濃度の差が共に少なく、日変化に よる濃度変動が見られている。ここで、PM<sub>2.5</sub>質量濃度は、夏季・冬季ともに24 時間採取後に50%室温で24時間調整した後の質量を示している。



南関東全体のSPM濃度(沿道局を除く約200局の常時監視局データから空間 展開して得た平均濃度)と比較すると、冬季はSPM濃度とPM<sub>2.5</sub>濃度に大きな差 は見られていない。PM<sub>2.5</sub>の質量濃度はSPMの70-80%に相当することを考慮す ると、冬季に4局のPM<sub>2.5</sub>南関東平均SPM濃度が一致した結果は、4局が南関東 全体よりも20-30%高めの地域であったものの、南関東全体が空間的な均一な 濃度勾配を保ちつつ、気象による日変化を示していた結果と考えられる。4局 のPM<sub>2.5</sub>濃度と風速とのと関係は、図3-3に示すように、きれいな逆相関関係が 見られていた。

これに対し、図3-1に示す夏季の結果は、特に南風に変化した8月2日以降、 SPM濃度とPM<sub>2.5</sub>濃度との乖離が出ている。東風時と南風時の典型的なSPM空 間濃度分布の違いを図3-4に示す。南風の侵入により北部のSPM濃度が増加し、 8月2日前後でPM濃度の空間分布が大きく異なった。東風が卓越した7月29日は、 図3-4左の破線で囲んだ地域である南部の東西に長い地域で高濃度となった。一 方、南風が卓越した8月3日は、埼玉県西部の南北に長い地域で高濃度が見られ た。後者の粒子成分は、SO<sub>4</sub><sup>2-</sup>が多い特徴があった。PM<sub>2.5</sub>濃度と風速との関係 は、夏季には図3-2に示すように風速との相関も悪く、風による物理的な拡散が 支配した冬季に対して、光化学二次粒子生成の影響を受けた北部高濃度化の過 程が推察された。





#### 4. PM成分

夏季・冬季のPM成分の測定地域による違い、および高濃度時に卓越する成分 をまとめ、図4-1に示す。夏季の成分は、浦安を除き、SO4<sup>2-</sup>とOCが主要な成分 で地域による大きな違いが無い点、南風が卓越した高濃度時にはSO4<sup>2-</sup>の割合が 大幅に増える点が明らかとなった。これまで述べてきたように、粒子採取は24 時間であるため、NO3<sup>-</sup>やCIの濃度は検出できなかった。さらに、OC等の揮発 性の高い物質も含め、一部の成分は24時間サンプリング中に揮発した可能性が ある。

このような揮発性物質のガス-粒子平衡を調査するために、デニューダを用い たガス・粒子採取を同時に実施している。図4-2は、平成20年7月29日から8月4 日(サンプリング終了は、5日9時)の24時間採取した試料と、3時間ごとにデニュ ーダ観測した結果を示したものである。各無機イオン成分の7日間の最大値・ 最小値と平均値を黒で示し、24時間サンプリングに対応した3時間ごとのデニ ューダ観測から得られた日最大値・最小値、平均値を赤で示した。なお、スケ ールを一致させるため、NH<sub>4</sub><sup>+</sup>は濃度を1/5で表示するとともに、SO<sub>4</sub><sup>2-</sup>は1/10で 表示している。

この結果から、主要成分である $NH_4^+$ と $SO_4^{2^-}$ は、浦安を除き大きな差は無かったが、 $CI^-$ や $NO_3^-$ 等揮発性の高いイオンは、大きな食い違いが出た。さらに、 $Na^+$ ,  $K^+$ ,  $Ca^{2+}$ 等の金属イオンも24時間採取で過小となった。



図4-1 PM成分のまとめ



図4-2 採取時間の違いによる濃度差 (夏季観測) (日最大値・最小値・平均値の比較、黒:3時間、赤:24時間)

一方、図4-1に示すように冬季はOCが主な成分で、ついでEC, NO<sub>3</sub>が主要成分となり、高濃度時に増える特徴的な成分は無いことが分かった。また、冬季も地域による大きな違いは見られなかった。

冬季のサンプリング時間によるアーティファクトを、図4-3に示す。冬季のデ ニューダ観測は、ガス化する濃度が夏季と比較して少ないと考えられたため、 日中は6時間、夜間は12時間採取とした。平成21(2009)年11月28日から12月4 日の、期間内の日最大値・最小値と平均値を比較した。また、スケールを合わ せるためCI は1/2の濃度で、NH4<sup>+</sup>, NO3<sup>-</sup>, SO4<sup>2</sup> は1/10の濃度でプロットした。こ の結果は、夏季と対象的で、ガス化しているCI (HCI)やNO3<sup>-</sup> (HNO3)等が粒子に 凝縮するため24時間採取の試料では高い濃度となった。このようなガス-粒子化 の作用もあり、冬季は夏季と比較して粒子中にNO3<sup>-</sup>が多く存在している。



図4-3 採取時間の違いによる濃度差 (冬季観測) (日最大値・最小値・平均値の比較、黒:3時間、赤:24時間)

このように揮発性成分は、気温によりガス-粒子の平衡がずれる。図4-4は、 デニューダ観測より得られたNO3 とNH4<sup>+</sup>のガスおよび粒子の濃度を示す。なお、 図4-4の凡例でgと記したものは、ガス状に存在するもので、デニューダ中の濃 度を示す。また、pはフィルタに採取された粒子中に含まれる濃度である。vは フィルターの下流に挿入したガス吸着剤を塗布したフィルタに吸着した濃度を 示し、フィルタから気化した成分を示す。よって、p+vが粒子として存在する 濃度である。

この結果から、夏季の日中にガス状NO<sub>3</sub> 濃度が上昇しガス化する傾向、また 夜間にはその割合が低下し、粒子として存在する傾向が見られた。構成比から は日中では約8割がガスとして存在し、夜間には5-6割が粒子となる。また、降 雨があった8月5日は他と異なり、日中でも粒子として存在する割合が多い結果 となり湿度依存性が示された。一方、冬季はNO<sub>3</sub> 濃度に明確な日変化が見られ ず、約8割が粒子として存在する状態が確認できた。

ー方、NH<sub>4</sub><sup>+</sup>については、夏季観測前半ではガス状で存在する割合が高く3割 程度が粒子として存在していたが、8月1日以降、カウンターイオンであるSO<sub>4</sub><sup>2-</sup> 濃度増加に伴い粒子の割合が6割程度に増加した。冬季はガス粒子合わせて濃 度が低く、ガス状で存在する割合が高かった。これは、冬季のSO<sub>4</sub><sup>2-</sup>濃度が低い こと、NH<sub>4</sub><sup>+</sup>の生成が少なくなることによるものと考えられる。



#### 5. PM中の炭素成分の挙動

自動車排気と関連の深い炭素成分について、熱光学式炭素分析計でカーボン プロファイルを計測した。これは、図5-1に示すように、石英繊維フィルタに採 取した粒子をHe雰囲気中で加熱して気化する成分を加熱温度とともに測定す



る。炭素成分は有機炭素成分(OC)とし ては計測される温度範囲が低い順に OC1、OC2、OC3、OC4に分類できる。 気化したOCが炭化するため、OC4の計 測の後、2%のO<sub>2</sub>を添加し、フィルタ を光学計測して初期の状態まで補正す る。ここでは、反射率が初期の状態と なるまでの値をPyrolyzed OC(Pyr-OC)とした。この後、O<sub>2</sub>2%雰 囲気で加熱して無機炭素成分(EC)の 計測にはいるが、ECも検出温度の低い 順にEC1、EC2、EC3に分類して計測 することができる。

OCは、OC1からOC4およびPyr-OC までを指し、ECは、EC1からPyr-OC を差し引いたChar-ECと呼ばれる成分 と、EC2、EC3の和を指す。なお、OC の中でOC1が最も揮発性が高く、不安定な物質である。同様に、EC1は、低温 で燃焼した際の未燃生成分である。また、Pyr-OC は、酸化したOCとも称され、 光化学反応による影響を含んだ物質とされている。

Han et al. (2007)によると、Char-ECは、木材燃焼で特異的に出る成分で、植物燃焼由来成分であると言及している。一方、EC2とEC3の和はSoot-ECと呼び、高温燃焼による未燃生成物として分類している。これは、ディーゼル車排気粒子を含む、植物燃焼以外の人為的・工業的に生成した物質として考えられている。

図5-2に熱光学分析で得られたCarbon Profileの季節および地域による違いを 示す。炭素濃度は冬季が高く、図に示した赤棒が目立つ。夏季はOC2が多く、 次いでChar-ECが高い濃度を示した。また、冬季よりEC2濃度が高いのが特徴 である。冬季はOC2、OC3、Char-ECが高い濃度であった。浦安のCarbon Profile が他と若干異なるものの、概して地域的な差異は認められない。

各炭素成分ごとに地域による差や季節の差を詳細に見ると、図5-3に示すよう に、排出源に関連すると思われる特徴が見られた。今回の観測では、OC1はほ とんど検出できなかったため、地域比較の検討からはずした。OC2は、浦安や 九段等の都心より埼玉大や騎西等の内陸部で高い濃度を示す傾向が見られた。 炭素中のOC2の割合(OC2/TC)が、オゾン濃度や気温・風速と正相関を示し(相 関係数はそれぞれ:0.63,0.88,0.51)光化学反応の活発な状態で高い濃度割合を 占め、OC2の一部が二次粒子生成した可能性が示唆された。この傾向はPyr-OC により顕著に見られ、NO, NO<sub>2</sub>との負相関、オゾンや日射強度との正相関が見 られた(相関係数はそれぞれ:-0.60,-0.63,0.61,0.62)。



一方、OC4は比較的揮発性の低いOCで、濃度の地域差が見られなかった。 OC3は、OC2とOC4の中間的な傾向が地域分布に見られた。

図5-2 Carbon Profileの季節・地域特性



図5-3 炭素成分の季節・地域特性比較

Char-ECは炭素成分の中で最も濃度が高く、全体を代表する成分である。夏季に九段で最も高い原因は不明である。冬季は騎西で最も高いほかは3箇所で同じような濃度を示した。夏季は東風と南風、冬季は北風がそれぞれ卓越していたため、夏季の分布は都心を中心とした排出源の影響が局所濃度を高めた可能性、冬季は騎西およびその北部で排出された影響が南関東全体に及んだ可能性が考えられる。詳細な解析を後述する。

EC3は非常に濃度が低いため、Soot-ECはほとんどEC2の傾向による。EC2 もOC4と同様に地域差がほとんど認められない傾向を示した。

図5-4に全炭素中のChar-ECの割合を示す。この結果からも夏季に九段で高い 濃度割合を示していた。Char-ECについてHan et al.が言及している植物燃焼由 来であるということを考えると、セルロース燃焼時に生成する植物燃焼トレー サーであるLevoglucosan濃度が高い結果が期待される。しかし、図5-5に示す ように、夏季の九段および浦安・埼玉大でLevoglucosanの含有率は非常に低く、 夏季の九段で見られたChar-ECの含有率が高い原因として、植物燃焼以外があ ったのではないかと考えられた。







図5-5 Levogulcosanの粒子含有率

一方、冬季は、埼玉大と騎西でLevoglucosanの含有率が高く、埼玉県北部の 植物燃焼成分が北風で東京に輸送された可能性が示唆された。

LevoglucosanとChar-ECとの関係は、図5-6 に示すように正の相関関係を示す傾向がある ものの、相関係数は0.27と低い。このことか らも、Char-EC中に植物燃焼以外の排出源の 影響を含むとともに、Levoglucosan自身も大 気中を浮遊している間に酸化を受けて消失す る可能性が考えられ、これらの成分から排出 源に関する情報を得るには限界があると考え られた。

図5-6で示した関係を用い、Levoglucosan 濃度から得たChar-ECに含まれる植物寄与を 試算した結果を図5-7に示す。上記したと同様 に、夏季の浦安・九段・埼玉大では、植物由



来のChar-ECは少なく、植物以外の排出源の影響が示唆されると共に、冬季は Char-ECの多くの部分が植物由来である可能性が示唆された。また、騎西に関 しては、夏季も冬季もLevoglucosanの割合が高く、Char-ECのほとんどが植物 由来であることを推定していた。なお、図に示す負の割合は、計算された植物 由来の寄与が観測結果を上回った結果である。



図5-7 LevogulcosanとChar-ECの関係より推計したChar-ECの植物寄与



全炭素中のSoot-ECの割合は、図 5-8に示すように、夏季の浦安を除き、 夏季・冬季とも地域差がなくほぼ一 定の割合を示した。図5-3に示した炭 素成分の絶対濃度の地域比較におい ても、差が少ない傾向が示されてい たが、気流による拡散の影響を排除 するために実施した全炭素との比率 の解析で一定値を示したことは、 Soot-ECが非常に広範囲に存在して いることを示唆するものである。



Char-ECが植物燃焼とどの程 度関係があるか、あるいは、 PM<sub>2.5</sub>の成分間でどのような関 連を持っているかを調査するた め、夏季と冬季の24時間採取し た全粒子成分データとその際の 気象データ、およびNOxやO<sub>3</sub>な どの大気汚染物質濃度を用い、 最短距離法を用いたクラスター 解析を実施した。結果を図5-9 に示す。各因子間で同じ挙動を 示す因子の距離は短く、近いも の同士がツリーとして示されて

いる。ただし、Mg<sup>2+</sup>やF<sup>-</sup>等のイオンは、濃度が非常に低く、他の因子の変動の 影響を受けないため、NO<sub>2</sub>以下のツリーは不動因子として考える。図の中で Char-ECと最も近い因子はNO<sub>3</sub>であり、NOxから生成するNO<sub>3</sub>と同様の挙動を 示すことから、燃焼生成物であることが示唆された。しかし、levoglucosanと 関係が非常に遠く、Char-ECが植物由来であると断言できない。

全体を網羅したクラスター解析から炭素成分の個々の特徴を把握するのが困 難であったため、個々の相関の調査から炭素の排出源に関する情報を検討した。 全炭素中の炭素成分割合と汚染ガス濃度や気象、無機イオン成分割合との相関 の結果を図5-10に示す。



図5-10 全炭素中の成分割合とガス・気象・無機イオン成分割合との相関

これまで述べてきたように、Char-ECはlevoglucosanと弱い正相関を示し植物由来を示唆するとともに、NOやNO<sub>2</sub>とは強い正相関を示すことから、比較的ローカルな燃焼生成物である特徴を示している。一方、Soot-ECは、NOやNO<sub>2</sub>とは負の強い相関を示すと共にオゾンや風速と正相関を示すことから、広域に存在する特徴を示し、levoglucosanとは負相関を示すことから、少なくともローカルな植物燃焼によって生成するものではないことが示唆された。以上のよ

うに、Char-ECとSoot-ECの挙動の一端は把握できたものの、まだ未解明な部分が多い。個々の炭素成分に関しては、上記した以外にまだ特徴が掴めていないのが現状で、比較的濃度の高いOC2、Pyr-OC、EC2等を中心に、観測回数を増やし挙動を把握することが重要である。

#### 6. 炭素同位体による解析

#### 6.1 夏季観測結果に対するTC中の<sup>14</sup>C分析

炭素同位体を用いた分析は、排出源の特定に有効である。<sup>13</sup>C および<sup>14</sup>C は、 <sup>12</sup>C に対し、それぞれ1/100、1/100,000 程度存在し、<sup>13</sup>Cは燃料や燃焼方法・ 燃焼温度によって特有の排出をする。<sup>14</sup>Cは、半減期が5500 年と短いため、化 石燃料中には存在しない。従って、粒子中の<sup>14</sup>C/<sup>12</sup>C を調べ、植物由来<sup>14</sup>C濃度 で規格化したpMC(Percent Modern Carbon)を求めることにより化石燃料由来 か植物由来かが明らかとなる。

南関東7箇所で8月の1ヶ月間(代々木と浦安は2週間)、粒子を採取し、炭素同 位体分析を行った。結果の数値を表6-1 に、空間分布にしたものを図6-1に示す。 ここで、 $\delta^{13}$ C は、国際標準物質(Pee Dee belemnite)に含まれる<sup>13</sup>C 濃度との 差を示す。また、 $\Delta^{14}$ C は1950 年の植物由来炭素に含まれる<sup>14</sup>C 濃度との差 を示す。以上の結果から、pMC(Percent Modern Carbon;植物起源の<sup>14</sup>C/<sup>12</sup>C を 100とし、化石燃料起源を0とした指標)値は、 都心である九段で低く、郊外で 高い値を示した。さらに、都心であっても植物の多い代々木で高い結果となっ た。この結果から、全炭素の3-4割は植物由来であることが分かった。

一般に高温燃焼ほど<sup>13</sup>C 濃度が増加する。浦安以外の地域で示す $\delta^{13}$ C 値は、 石油燃焼によるものと示唆される。

| 採取地 | δ <sup>13</sup> C値<br>(‰) | pMC値<br>(%) | △ <sup>14</sup> C値<br>(‰) |
|-----|---------------------------|-------------|---------------------------|
| 浦安  | -30.80±0.18               | 37.32±0.14  | -626.8±1.4                |
| 九段  | -27.39±0.12               | 29.14±0.12  | -708.6±1.2                |
| 埼玉大 | -26.13±0.14               | 35.48±0.13  | $-645.2\pm1.3$            |
| 騎西  | -25.79±0.16               | 38.79±0.15  | $-612.1\pm1.5$            |
| 国環研 | -26.26±0.17               | 46.97±0.15  | $-530.3 \pm 1.5$          |
| 首都大 | $-25.28 \pm 0.20$         | 41.01 ±0.16 | $-589.9 \pm 1.6$          |
| 代々木 | -25.43±0.10               | 41.07±0.14  | $-589.3 \pm 1.4$          |

表6-1 炭素同位体分析結果



図6-1 pMCの空間分布

6.2 冬季観測結果に対するEC/OC別の<sup>14</sup>C分析の試み

冬季の試料は、上記したPM<sub>2.5</sub>の24時間採取と並行して4つの同じ測定局で、 同じサンプラー(ムラタ計測器製MCAS-SJ)を用い24時間採取を実施した。

加速器型質量分析器を用いた<sup>14</sup>C分析には、少なくとも約1mgの炭素試料が必要である。夏季観測では、全炭素(TC)に含まれる<sup>14</sup>C濃度を測定したが、冬季試料に対して、TCとともにEC中の<sup>14</sup>Cを測定し、ECとOCに含まれる植物寄与を計測することを目標とした。24時間採取した試料に含まれるEC濃度は、上記した別のフィルタで把握できるため、観測期間中、何日分のフィルタを足し合わせることで1mgCが達成できるか試算した。夏季観測では16.7L/minのポンプで採取したのに対し、冬季は30L/minのポンプで採取したので、より多くの試料が得られた可能性がある。このことから、濃度が高ければ、<sup>14</sup>C濃度の時間変化が測定できる可能性がある。結果としては、観測期間全てのフィルタ(浦安を除く3局は16日分、浦安は14日分)の足し合わせが必要であることが分かった。よって、ここでは、夏季と同様に約2週間の平均値として結果を得た。

PM<sub>2.5</sub>試料からECの<sup>14</sup>C濃度を計測するための試料の作成法を図6-2に示す。 加熱する際に試料に含まれる微量金属による触媒作用や、試料に含まれている 酸素の影響で、OCが炭化しECとしてカウントされてしまうため、TCからOC の混入を防ぎECだけを抽出する方法は、He雰囲気または、微量の酸素を混ぜ た雰囲気中で、高温に加熱する手法で、酸素濃度、加熱温度、加熱時間等に関 し、これまで種々の方法が提案されてきた。ヨーロッパでは、加熱しないで強 塩基でOCを抽出する方法も提案されている。

大阪府立大学溝畑朗教授に協力頂き、加熱条件を調査した結果、試料により 炭化の条件がそれぞれ異なるため、加熱条件を一定に設定するのは問題があり、 図に示す熱光学式炭素分析法でOCの炭化分を補正してECの試料を得るのが最 も良いことが分かった。ここでは、1測定局で得た16枚(浦安は14枚)の試料そ れぞれを半切し、一方をTC用の試料として冷凍保存するとともに、片方をDRI Model 2001に特別に作成した試料セル中に入れてIMPROVE-Aの手順でOCを 脱気させ、EC試料を得た。 得られたTCおよびECの試料は、パレオラボ社で<sup>12</sup>C, <sup>13</sup>C, <sup>14</sup>Cの濃度を加速器 質量分析器を用いて計測し、それぞれの濃度から $\delta^{13}$ C、 $\Delta^{14}$ C、pMC(percent modern carbon)を得た。



図6-2 ECの放射性炭素 "C濃度計測のための抽出法

冬季の分析結果を表6-2に示す。この結果から、南部の浦安から北部の騎西に 行くに従い、炭素同位体濃度が増加している傾向が見られた。また、それに追 従してpMC値の増加が見られた。ただし、詳細にデータを眺めると、浦安での ECに含まれる  $\delta^{13}$ C濃度が低く、この結果は夏季に分析したTC中の  $\delta^{13}$ Cの傾 向と一致したものであった。騎西でも  $\delta^{13}$ C濃度が低く、他と異なる傾向を示し た。さらに、騎西では  $\Delta^{14}$ C濃度が他から飛びぬけて高い濃度を示し、これまで 言及してきた騎西の特異性が確認された。

冬季のTCのpMC値は、夏季と比較すると10-20%程度高く、冬季に植物由来の寄与が増加する傾向が示された。

| TC                                | δ <sup>13</sup> C値<br>(‰)                                                         | pMC値<br>(%)                                           | Δ <sup>14</sup> C 値<br>(‰)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Urayasu                           | $-27.46 \pm 0.24$                                                                 | $46.73 \pm 0.16$                                      | $-532.7\pm1.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Kudan                             | $-27.32\pm0.20$                                                                   | $48.15 \pm 0.17$                                      | $-518.5 \pm 1.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Saitama                           | $-27.88 \pm 0.39$                                                                 | $49.37 \pm 0.18$                                      | $-506.3 \pm 1.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Kisai                             | $-26.90\pm0.13$                                                                   | $59.32 \pm 0.16$                                      | $-406.8 \pm 1.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                   |                                                                                   |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| EC                                | δ <sup>13</sup> C値<br>(‰)                                                         | pMC値<br>(%)                                           | $\Delta^{14}$ C 値<br>(‰)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| EC<br>Urayasu                     | δ <sup>13</sup> C値<br>(‰)<br>-28.68±0.24                                          | pMC値<br>(%)<br>35.02±0.16                             | Δ <sup>14</sup> C 値<br>(‰)<br>-649.8±1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| EC<br>Urayasu<br>Kudan            | δ <sup>13</sup> C値<br>(‰)<br>-28.68±0.24<br>-26.66±0.18                           | pMC値<br>(%)<br>35.02±0.16<br>35.23±0.12               | $\Delta^{14}$ C 値<br>(‰)<br>-649.8±1.6<br>-647.7±1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| EC<br>Urayasu<br>Kudan<br>Saitama | $\frac{\delta^{13}C(\vec{n}_{0})}{-28.68\pm0.24}$ $-26.66\pm0.18$ $-27.29\pm0.15$ | pMC値<br>(%)<br>35.02±0.16<br>35.23±0.12<br>38.23±0.13 | $\begin{array}{c} \Delta^{14}C & (interpretation (interpretati$ |

表 6-2 炭素同位体濃度測定結果

pMCから計算した植物由来TC(BTC)濃度とlevoglucosan濃度との関係は、図 6-3に示すように正相関を示した。しかし、両者の近似線はBTC=0.3µg/m<sup>3</sup>付近 に切片を持った。これは、植物由来炭素であるもののlevoglucosanを含まない 物質であり、BTCが輸送過程にlevoglucosanが酸化消滅するような遠方の物質 であるか、植物燃焼を伴わないBVOCから生成した物質であるか、またその両 方かの可能性を示した。

TCおよびECのpMCとそれぞれの濃度から、TC=EC+OCを仮定し、OCのpMC が次式に示すように推計できる。

pMOC = (pMTCx[TC] - pMECx[EC]) / ([TC] - [EC])

ここで、pMOC, pMTC, pMECはそれぞれ OCのpMC値、TCのpMC値、ECのpMC値、 [TC], [EC]はそれぞれTC濃度、EC濃度を指 す。[TC], [EC]を前項で示す同時に採取した 試料濃度を用いた場合、表6-3に示すように、 浦安では53.6%を得た。一方、パレオラボ で加速器質量分析器にかける際に、供出し た試料から、酸洗浄後にデシケータ内で塩 酸(12N)蒸気による炭酸塩除去を実施し、鉄 表面に析出させた際に計測した[TC], [EC] を用いた場合、表中の括弧に示す値が得ら れた。騎西を除き、両者の差は10-15%で あった。このようにOCのpMC値はまだ不 確定な要素を含む。



図6-3 植物由来炭素濃度(BTC) とlevoglucosan濃度との関係

OCのpMC値も郊外へ行くに従い高い値を示した。このことから、郊外では 植物由来の炭素が多く排出されていることが確認された。また、冬季の観測期 間中の風向が北であったため、九段や浦安のpMC値は北部の植物寄与が影響し た可能性も考えられる。

全体の傾向から、冬季の植物寄与は、TC=50%、EC=40%、OC=60%であり、 ECと比較してOCの植物寄与が大きいことが明らかとなった。表6-3で得られた pMCを用い炭素の寄与を植物寄与(B)と化石燃料寄与(F)とに分類し、これまで 得られた結果を整理すると図6-4に示す結果となる。

|     | pMC值(%)          |                  |                |  |  |
|-----|------------------|------------------|----------------|--|--|
|     | ТС               | EC               | OC推定值          |  |  |
| 浦安  | 46.73±0.16       | $35.02 \pm 0.16$ | 53.60 (63.81)  |  |  |
| 九段  | 48.15±0.17       | $35.23 \pm 0.12$ | 54.99 (68.06)  |  |  |
| 埼玉大 | 49.37±0.18       | $38.23 \pm 0.13$ | 55.21 (64.32)  |  |  |
| 騎西  | $59.32 \pm 0.16$ | $45.54 \pm 0.16$ | 66.72 (217.19) |  |  |
| 平均  | 50.89            | 38.51            | 57.63          |  |  |

表6-3 計測したTCおよびECのpMC値と推計したOCのpMC値



図6-4 炭素成分と植物・化石寄与濃度

夏季では化石燃料由来の全炭素(FTC)は、測定局によりまちまちの濃度を示 したが、冬季には測定局によらずほぼ一定の濃度(3μg/m<sup>3</sup>)を示した。さらに冬 季では化石燃料由来のEC(FEC)も1.5μg/m<sup>3</sup>一定の傾向を示した。参考として炭 素成分濃度を左図に示すが、Soot-ECはほとんどPECに含まれる他、Char-EC の一部もFECに含まれるものと考えられる。FTCの傾向が夏季と冬季とで大き く異なる原因として、排出源の位置と風向が考えられる。化石燃料を多く消費 する地域は東京と湾岸の工業地域である。夏季は南風が卓越し、排出源に近い 測定地域はその影響を強く受ける。一方、冬季は北風が卓越していたため、特 定の排出源の影響を受けず、南関東全域で均一な濃度となった可能性を示唆し ている。

植物由来の全炭素(BTC)は、前述したように北部郊外ほど高い濃度を示して いる。今回計測した植物起源のEC(BEC)も北部郊外が高い結果となり、植物燃 焼が北部郊外で多いことが示唆された。さらに、推計した植物起源のOC(BOC) は、BTCの70%以上を占め、植物由来の炭素の多くがOCであることが確認でき た。BOCも北部郊外ほど高濃度となっているが、その割合がBECの地域差より 大きく、北部から東京方面へ輸送される過程でBOCが消滅した割合が高いこと を示した。この知見は、今後の粒子生成・消滅のメカニズム考察に有益な情報 となる。また、BOCはOCの55%程度であったことから、化石由来のOC(FOC) も無視できない影響を持っていることが明らかとなった。今後は、OC1から Pyr-OCまでの成分とBOCおよびPOCとの関係を明らかにすることが課題であ る。 7. まとめ

1. JATOP広域観測結果によると、夏季と冬季の高濃度は、それぞれ異なる気 流と関係し、汚染物質の移動の影響を受けた地域分布を示した。すなわち、夏 季高濃度は南風に転じた時点で高濃度を示し、二次粒子生成によると考えられ る北部地域で高濃度を示した。一方、冬季は弱風時に高濃度となり、南関東が 均一に濃度変化を現した。

2. 夏季は $SO_4^2$ が卓越し、 $NH_4$ <sup>+</sup>濃度増加を高めて高濃度化した過程が見られた。 一方、冬季はOCが多く、次いで $NO_3$ とECが多く見られ、高濃度時でも組成の 大きな変化は見られなかった。

3. NO<sub>3</sub>のガス-粒子平衡は、夏季の日中は約8割がガス側に、夜間は5-6割が粒 子側にシフトする日変化が見られたが、冬季は明確な日変化が見られず、粒子 側にシフトした分布となった。NH<sub>4</sub><sup>+</sup>は、夏季観測前半ではガス状で存在する割 合が高く3割程度が粒子として存在していたが、8月1日以降、カウンターイオ ンであるSO<sub>4</sub><sup>2-</sup>濃度増加に伴い粒子の割合が6割程度に増加した。冬季はガス粒 子合わせて濃度が低く、ガス状で存在する割合が高かった。

4. 炭素成分分析の結果、冬季は夏季より高濃度であったほか、OC2、Pyr-OC、 Char-EC、EC2が主な成分であった。OC2およびPyr-OCは、光化学二次生成の 影響を受けた挙動を示した。全炭素中のChar-ECは、levoglucosanと弱い相関 を示し、植物寄与の可能性を示唆した。冬季は北風により関東北部の植物燃焼 がChar-EC濃度に影響を及ぼしたが、夏季には植物燃焼以外の排出源の影響が 浦安・九段で強く見られた。一方、全炭素中のSoot-ECはlevoglucosanと負相 関を示し、地域によらず一定の値を示した。

参考文献

Han, Y.M., Cao J.J., Chow J.C., Watson, J.G., An, Z.S., Jin, Z.D., Fung, K., Liu, S., 2007. Evaluation of using thermal/optical reflectance method to discriminate between soot- and char-EC. *Chemosphere*, **69**, 569–574.

# 東京都微小粒子状物質検討会

# レセプターワーキング報告書

ーレセプターモデルによる PM2.5 発生源寄与割合の推定---

PM25の発生源寄与の推定に関するワーキンググループ

| 第1章                                                                                                                                                                                                                                                                                                                                                                                   | $\mathbf{PM}_{2}$ | 5 発生源寄与割合の推定 作業フロー               | 335 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------|-----|
| 第2章                                                                                                                                                                                                                                                                                                                                                                                   | PMF               | 「法 1-季節や地点により分類しないデータへの適用        | 336 |
| 2 - 1                                                                                                                                                                                                                                                                                                                                                                                 | 大気                | 環境データのスクリーニング                    | 336 |
| 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                                                                                                                                                                                                                                                                                                                                               | -1                | 大気環境データ                          | 336 |
| 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                                                                                                                                                                                                                                                                                                                                               | -2                | イオンバランスによるチェック                   | 336 |
| 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                                                                                                                                                                                                                                                                                                                                               | -3                | マスクロージャーモデルによるチェック               | 337 |
| 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                                                                                                                                                                                                                                                                                                                                               | -4                | 使用する成分の検討                        | 338 |
| 2 - 2                                                                                                                                                                                                                                                                                                                                                                                 | PMF               | ' 法による計算                         | 340 |
| 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -                                                                                                                                                                                                                                                                                                                                               | -1                | 因子数の決定                           | 340 |
| 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -                                                                                                                                                                                                                                                                                                                                               | -2                | 大気環境データの誤差評価                     | 340 |
| 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -                                                                                                                                                                                                                                                                                                                                               | -3                | 計算結果                             | 341 |
| 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -                                                                                                                                                                                                                                                                                                                                               | -4                | 因子の由来                            | 343 |
| 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -                                                                                                                                                                                                                                                                                                                                               | -5                | 因子の寄与割合                          | 344 |
| 第3章                                                                                                                                                                                                                                                                                                                                                                                   | PMF               | 「法2-季節や地点により分類したデータへの適用          | 345 |
| 3-1                                                                                                                                                                                                                                                                                                                                                                                   | 大気                | 環境データのスクリーニング                    | 345 |
| 3 - 1 - 1                                                                                                                                                                                                                                                                                                                                                                             | -1                | 大気環境データ                          | 345 |
| 3-1-                                                                                                                                                                                                                                                                                                                                                                                  | -2                | イオンバランスによるチェック                   | 345 |
| 3 - 1 - 1                                                                                                                                                                                                                                                                                                                                                                             | -3                | マスクロージャーモデル、イオン成分と金属成分の比較によるチェック | 346 |
| 3-1-                                                                                                                                                                                                                                                                                                                                                                                  | -4                | 季節および地点によるデータの分類                 | 347 |
| 3-1-                                                                                                                                                                                                                                                                                                                                                                                  | -5                | 使用する成分の検討                        | 347 |
| 3 - 2                                                                                                                                                                                                                                                                                                                                                                                 | PMF               | ' 法による計算                         | 348 |
| 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 3 | -1                | 因子数の決定                           | 348 |
| 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 3         | -2                | 大気環境データの誤差評価                     | 349 |
| 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 3 | -3                | 計算結果                             | 350 |
| 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 3 | -4                | 因子の由来および寄与割合                     | 354 |
| 第4章                                                                                                                                                                                                                                                                                                                                                                                   | CME               | 3法                               | 356 |
| 4-1                                                                                                                                                                                                                                                                                                                                                                                   | 大気                | 環境データのスクリーニング                    | 356 |
| 4-1-                                                                                                                                                                                                                                                                                                                                                                                  | -1                | 大気環境データ                          | 356 |
| 4-1-                                                                                                                                                                                                                                                                                                                                                                                  | -2                | イオンバランス、マスクロージャーモデルによるチェック       | 356 |
| 4-1-                                                                                                                                                                                                                                                                                                                                                                                  | -3                | 使用する成分の検討                        | 356 |
| 4 - 2                                                                                                                                                                                                                                                                                                                                                                                 | 発生活               | 原プロファイル                          | 356 |
| 4 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 3 - 2 - 3 - 3                                                                                                                                                                                                                                                                                                                                     | -1                | 発生源プロファイルの整理                     | 356 |
| 4 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 3 - 2 - 3 - 3                                                                                                                                                                                                                                                                                                                                     | -2                | 発生源プロファイルの検討                     | 357 |
| 4 - 3                                                                                                                                                                                                                                                                                                                                                                                 | CME               | 3法による計算                          | 360 |
| 4 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -                                                                                                                                                                                                                                                                                                                                               | -1                | 一般環境と道路沿道                        | 360 |
| 4-3-                                                                                                                                                                                                                                                                                                                                                                                  | -2                | 区部と多摩部                           | 360 |
| 4-3-                                                                                                                                                                                                                                                                                                                                                                                  | -3                | 各発生源の指標元素濃度                      | 363 |
| 4-3-                                                                                                                                                                                                                                                                                                                                                                                  | -4                | 地点間における寄与濃度のばらつき                 | 364 |
| 4-3-                                                                                                                                                                                                                                                                                                                                                                                  | -5                | 過去の調査との比較                        | 366 |
| 第5章                                                                                                                                                                                                                                                                                                                                                                                   | まと                | Ø                                | 368 |

### 第1章 PM2.5発生源寄与割合の推定 作業フロー

以下の手順により、PM2.5発生源寄与割合の推定を行った。



### 第2章 PMF法1-季節や地点により分類しないデータへの適用

2-1 大気環境データのスクリーニング

2-1-1 大気環境データ

平成 20 年度の PM2.5 調査結果(都内 17 地点(一般環境 9 地点、道路沿道 8 地点)、各季節 2 週間、24 時間採取)を使用する。また、金属成分(中長寿命)を含めるため、炭素成分、イオン成分、金属成分(短寿命)データは1週間分を平均した。

2-1-2 イオンバランスによるチェック

イオンバランスによるチェックを行った結果、特に問題になるようなデータはなかった。



2-1-3 マスクロージャーモデルによるチェック

マスクロージャーモデルにより推定された質量濃度と秤量質量濃度の相関を調べ、大きくはずれたデータを解析の対象から除いた。



2-1-4 使用する成分の検討

① 検出下限値未満となったデータ数のチェック

検出下限値未満のデータが2割以上であった成分(炭素成分、イオン成分、金属成分(短寿命) は952 データのうち190 データ以上;金属成分(中長寿命)は136 データのうち27 データ以 上)は解析に使用しなかった。

| 成分                     |                 | 検出下限値未満のデータ数 |   |
|------------------------|-----------------|--------------|---|
| 出主代八                   | EC              | 0            |   |
| 灰糸成刀                   | OC              | 0            |   |
|                        | NH₄             | 0            |   |
|                        | Na              | 32           |   |
|                        | K               | 42           |   |
| イナン成公                  | Mg              | 752          | × |
| 「イノノル力                 | Ca              | 33           |   |
|                        | CI              | 158          |   |
|                        | NO <sub>3</sub> | 1            |   |
|                        | $SO_4$          | 0            |   |
|                        | Na(S)           | 1            |   |
|                        | Mg(S)           | 805          | × |
|                        | AI(S)           | 38           |   |
|                        | CI(S)           | 210          | × |
| 全层式公                   | K(S)            | 465          | × |
| 立周队刀<br>( <b></b> 5年会) | Ca(S)           | 684          | × |
| (短寿叩)                  | Ti(S)           | 913          | × |
|                        | V(S)            | 1            |   |
|                        | Mn(S)           | 0            |   |
|                        | Cu(S)           | 468          | × |
|                        | I(S)            | 21           |   |
|                        | Sc(L)           | 25           |   |
|                        | Cr(L)           | 13           |   |
|                        | Fe(L)           | 2            |   |
|                        | Co(L)           | 37           | × |
|                        | Ni(L)           | 136          | × |
|                        | Zn(L)           | 5            |   |
|                        | As(L)           | 0            |   |
|                        | Se(L)           | 4            |   |
|                        | Br(L)           | 1            |   |
|                        | Rb(L)           | 135          | × |
|                        | Sr(L)           | 134          | × |
| 金属成分                   | Mo(L)           | 98           | × |
| (中長寿命)                 | Ag(L)           | 72           | × |
|                        | Cd(L)           | 136          | × |
|                        | Sb(L)           | 0            |   |
|                        | Cs(L)           | 101          | × |
|                        | Ba(L)           | 126          | × |
|                        | La(L)           | 0            |   |
|                        | Ce(L)           | 81           | × |
|                        | Sm(L)           | 85           | × |
|                        | Eu(L)           | 136          | × |
|                        | Au(L)           | 134          | × |
|                        | K(L)            | 22           |   |
|                        | W(L)            | 41           | × |

② イオン成分と金属成分のどちらを使用するか

ナトリウム、カリウム、マグネシウム、カルシウム、塩素は、イオン成分および金属成分とし て測定されているので、どちらを解析に使用するかを検討した。検出下限値未満となったデータ 数のチェックにより、マグネシウムはいずれも使用不可、カルシウムと塩素はイオン成分に決定、 したがって、ナトリウムとカリウムについて、検討を行った。

| 成分 | イオン | 金属(短寿命) | 金属(中長寿命) |
|----|-----|---------|----------|
| Na | 0   | 0       | —        |
| К  | 0   | ×       | 0        |
| Mg | ×   | ×       | —        |
| Ca | 0   | ×       | —        |
| CI | 0   | ×       |          |

ナトリウムはイオン成分が金属成分に比べて高い傾向がみられたため(非水溶性成分も中性子放 射化分析では測定されるため、金属成分がイオン成分に比べて高くなると考えられるが、本調査 ではイオン成分の方が高かった)、カリウムは金属成分のデータに異常と思われるものがあった ため(楕円で示した部分)、いずれもイオン成分を使用した。



2-2 PMF 法による計算

2-2-1 因子数の決定

各因子数について、10回ずつ計算を行った結果、Q値の平均(Q\_Ave)は因子数が大きくなるほど小さくなり、ばらつき(Q\_RSD)は因子数が4と5のとき、小さくなった。そこで、因子数を5とした。なお、使用したソフトは EPA PMF 3.0 である。



2-2-2 大気環境データの誤差評価

各測定値の誤差の評価を行った。測定値を Ci、各成分の測定値の幾何平均を M、幾何標準偏 差を $\sigma$ とおく。Cr = Ci/M を求め、

- ・ $Cr \ge \sigma^2 \sigma$ とき、誤差5%、
- ・ $\sigma^2 > Cr \ge \sigma$ のとき、誤差 10%、
- • $\sigma > Cr \ge \sigma^{-1}$ のとき、誤差 15%、
- ・ $\sigma^{-1} > Cr \ge \sigma^{-2}$ のとき、誤差 20%、
- ・ $Cr < \sigma^{-2}$ のとき、誤差 25%

とした。

2-2-3 計算結果

① 各因子における成分を質量濃度で表示。



② 成分を相対比で表示(各成分について、因子 I からVまでの合計が100%になる)。



2-2-4 因子の由来

① 各因子の寄与

一般環境と道路沿道の比較

|           | Ι    | II   | III  | IV   | V    |
|-----------|------|------|------|------|------|
| 一般環境(23区) | 1.21 | 0.76 | 1.19 | 1.09 | 1.02 |
| 一般環境(多摩)  | 0.58 | 1.06 | 0.97 | 0.86 | 0.70 |
| 一般環境      | 0.93 | 0.89 | 1.09 | 0.98 | 0.88 |
|           |      |      |      |      |      |
| 道路沿道(23区) | 1.22 | 0.97 | 0.92 | 1.09 | 1.27 |
| 道路沿道(多摩)  | 0.84 | 1.38 | 0.84 | 0.89 | 0.89 |
| 道路沿道      | 1.08 | 1.12 | 0.89 | 1.02 | 1.13 |
|           |      |      |      |      |      |
| 道路沿道/一般環境 | 1.16 | 1.25 | 0.81 | 1.03 | 1.29 |

·季節変動

|    | Ι     | II   | III  | IV   | V    |
|----|-------|------|------|------|------|
| 春季 | 0.10  | 0.71 | 1.51 | 0.94 | 1.33 |
| 夏季 | -0.07 | 0.03 | 0.27 | 2.73 | 0.84 |
| 秋季 | 2.60  | 0.97 | 0.49 | 0.21 | 1.37 |
| 冬季 | 1.39  | 2.24 | 1.60 | 0.39 | 0.41 |

② 各因子におけるイオンバランス

|                            | Ι    | II   | III  | IV   | V    |
|----------------------------|------|------|------|------|------|
| 陽イオン(neq/m³)               | 21.2 | 31.9 | 19.0 | 51.1 | 12.9 |
| 陰イオン(neq/m³)               | 23.2 | 32.4 | 14.0 | 51.5 | 15.7 |
| 陰イオン/陽イオン                  | 1.10 | 1.02 | 0.74 | 1.01 | 1.22 |
|                            |      |      |      |      |      |
| Naイオン(neq/m³)              | 1.16 | 1.31 | 2.07 | 2.58 | 0.00 |
| CIイオン(neq/m <sup>3</sup> ) | 5.87 | 1.53 | 0.00 | 0.26 | 0.05 |
| CIイオン/Naイオン                | 5.04 | 1.17 | 0.00 | 0.10 | -    |

- ③ 各因子の由来の推定
- ・因子 I

塩素(76.2%)の比が高い。また、カリウム(22.6%)の比も比較的高くなっている。野焼 きが多く行われる秋季に寄与が大きいので、バイオマス燃焼に由来すると推定される。

・因子Ⅱ

硝酸の比が 43.0%と高く、塩素も 19.8%となっている。寄与は夏季が小さく、冬季が大きい ことから二次生成(硝酸アンモニウム、塩化アンモニウム)に由来すると推定される。イオ ンバランスも1に近くなっている。また、ナトリウムと塩素のバランスが比較的よいことか ら、海塩粒子にも由来すると推定される。

・因子Ⅲ

カルシウム(22.8%)やアルミニウム(40.8%)の比が高いことから土壌・道路粉じんに由 来すると推定される。

・因子IV

硫酸(54.9%)の比が高く、寄与は夏季が大きいことから二次生成(硫酸アンモニウム)に 由来すると推定される。イオンバランスも1に近い。また、バナジウムの比が67.7%と高い ことから重油燃焼にも由来すると推定される。

・因子V

一般環境に比べて、道路沿道における寄与が大きく、元素状炭素(30.7%)の比も高いので、 自動車排出ガスに由来すると推定される。また、マンガン(41.3%)に代表される金属の比 が高いことから鉄鋼にも由来すると推定される。

2-2-5 因子の寄与割合

各因子の寄与割合は、平均で PM2.5の秤量質量濃度(21.0µg/m<sup>3</sup>)に対して、

- ・因子 I : 13.0%
- ・因子Ⅱ:17.0%
- ・因子Ⅲ:7.5%
- ・因子IV:22.6%
- ・因子V:12.9%

であった(大気環境調査におけるその他の成分は含まれない)。

### 第3章 PMF法2-季節や地点により分類したデータへの適用

3-1 大気環境データのスクリーニング

3-1-1 大気環境データ

平成 20 年度の PM2.5 調査結果を使用する。対象とする成分は、1 日ごとのデータが得られて いる炭素成分(炭素フラクション)、イオン成分、金属成分(短寿命)とした。

3-1-2 イオンバランスによるチェック

イオンバランスによるチェックを行った結果、特に問題となるようなデータはなかった。



3-1-3 マスクロージャーモデル、イオン成分と金属成分の比較によるチェック マスクロージャーモデルにより推定された質量濃度と秤量質量濃度の相関、ナトリウムについ て、イオン成分と金属成分の相関を調べ、大きくはずれたデータを解析の対象から除いた。



- 346 -
3-1-4 季節および地点によるデータの分類

データを季節ごとに分け、さらに道路沿道と一般環境に分けた(8 つのグループに分類)。ただし、下連雀は他の道路沿道に比べて元素状炭素の濃度が低いことから、一般環境に分類した。

3-1-5 使用する成分の検討

① 検出下限値未満となったデータ数のチェック

分類された8つのグループそれぞれについて、検出下限値未満のデータが2割以上であった成分(炭素フラクションは0以下となったデータ数をチェックした)は解析に使用しなかった。 ② イオン成分と金属成分のどちらを使用するか

ナトリウム、カリウム、マグネシウム、カルシウム、塩素は、イオン成分および金属成分とし て測定されているので、どちらを解析に使用するかを、検出下限値未満となったデータ数のチェ ックにより決定した。その結果、カリウム、カルシウム、塩素はイオン成分に決定(金属成分は 使用不可)、マグネシウムはいずれも使用不可であった。ナトリウムはいずれも使用可能である が、検出下限値未満となったデータの数が金属成分の方が少なかったので、こちらを使用するこ とにした。なお、イオン成分と金属成分のどちらを使用するかについては、8つすべてのグルー プで共通とした。

検出下限値未満となったデータの数 (全データ数は 853 で、2 割以上のものを使用不可とした。)

| 成分 | イオ | ナン  | 金 | 属   |
|----|----|-----|---|-----|
| Na | 0  | 16  | 0 | 1   |
| K  | 0  | 28  | × | 420 |
| Mg | ×  | 654 | × | 713 |
| Ca | 0  | 25  | × | 615 |
| Cl | 0  | 148 | × | 203 |

解析の対象とした成分一覧

| 成分              | 春、一般 | 春、道路 | 夏、一般 | 夏、道路 | 秋、一般 | 秋、道路 | 冬、一般 | 冬、道路 |
|-----------------|------|------|------|------|------|------|------|------|
| EC1-Pyro        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| EC2             | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| OC1             | ×    | ×    | ×    | ×    | 0    | 0    | 0    | 0    |
| OC2             | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| OC3             | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| OC4             | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Pyro            | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| $NH_4$          | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| K               | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Ca              | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| CI              | 0    | 0    | ×    | ×    | 0    | 0    | 0    | 0    |
| NO <sub>3</sub> | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| SO <sub>4</sub> | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Na(S)           | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| AI(S)           | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| V(S)            | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Mn(S)           | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Cu(S)           | ×    | ×    | ×    | ×    | ×    | 0    | ×    | 0    |
| I(S)            | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| データ数            | 134  | 96   | 136  | 95   | 119  | 69   | 120  | 84   |

検出下限値未満のデータについては、検出下限値の 1/2 を使用した。冬季の一般環境と道路沿道の OC1 で、0 以下となったデータについては、他の成分との相関により(最も相関のよかった成分を 使用。一般環境は NO<sub>3</sub>、道路沿道は OC)値を推定した。

3-2 PMF 法による計算

3-2-1 因子数の決定

因子数3から8までについて、それぞれ10回ずつ計算を行った。その結果、Q値の平均(Q\_Ave) は因子数が大きくなるほど小さくなった。また、ばらつき(Q\_RSD)も小さくなるように(0.01% 以下)、因子数を決定した。なお、使用したソフトは EPA PMF 3.0 である。



春季、道路沿道(因子数5)













夏季、道路沿道(因子数5)











3-2-2 大気環境データの誤差評価
 2-2-2 と同じ。

3-2-3 計算結果

グループごとに結果を示す。左側が各因子の成分を質量濃度で表示したもので、右側が成分を 相対比で表示したものである(それぞれの成分について、各因子の合計が100%になる)。

春季、一般環境







夏季、道路沿道









秋季、道路沿道







3-2-4 因子の由来および寄与割合

8 つのグループそれぞれについて、因子の由来を推定し、寄与割合(PM<sub>2.5</sub>の秤量質量濃度に 対する割合)を計算した。

因子の由来を推定する際、指標とした各発生源の元素は、

- ・土壌・道路粉じん: Al、Ca、(Na)
- ・海塩粒子:Na、(Cl)
- ・鉄鋼:Mn
- ・重油燃焼:V
- ・バイオマス燃焼:K、(Na、Pyro)
- ・自動車排出ガス: EC1、EC2
- ・二次生成:NH<sub>4</sub>、Cl、NO<sub>3</sub>、SO<sub>4</sub>

である。

| 因子V<br>1356<br>137<br>1535<br>1535<br>1356<br>1356<br>1360<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 由<br>(EC2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 因子V<br>252<br>253<br>250<br>250<br>250<br>331<br>219<br>213<br>213<br>213<br>213<br>213<br>213<br>213<br>213<br>213<br>213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 二次生成<br>(CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 因子IV<br>857<br>866<br>868<br>867<br>801<br>813<br>813<br>813<br>813<br>813<br>814<br>813<br>814<br>813<br>814<br>814<br>813<br>814<br>814<br>814<br>814<br>814<br>814<br>814<br>814<br>814<br>814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 自動車<br>(EC1)<br>バイオマス<br>ニダ生成<br>(N0 <sup>3</sup> )<br>(SO <sup>4</sup> )<br>(SO <sup>4</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 因十四<br>115<br>115<br>115<br>115<br>115<br>115<br>115<br>115<br>115<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 重油蒸烧                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 因子目<br>14.2<br>14.2<br>14.2<br>14.2<br>14.2<br>15.2<br>15.3<br>11.1<br>18.1<br>18.4<br>19.0<br>29.5<br>29.5<br>29.5<br>29.5<br>29.5<br>20.5<br>20.5<br>20.5<br>20.5<br>20.5<br>20.5<br>20.5<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 神<br>子<br>子                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 因子田<br>355<br>355<br>355<br>355<br>355<br>355<br>355<br>458<br>458<br>458<br>448<br>448<br>448<br>448<br>448<br>448<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (旧<br>朝<br>(Ecu)<br>(NO <sup>3</sup> )<br>(NO <sup>3</sup> )<br>(SO <sup>4</sup> )<br>(SO <sup>4</sup> )<br>(SO <sup>4</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 21.1.4.g/m <sup>3</sup><br>21.1.4.g/m <sup>3</sup><br>55<br>55<br>54<br>240<br>240<br>240<br>21<br>36<br>4<br>37<br>21<br>36<br>4<br>37<br>21<br>36<br>4<br>37<br>60<br>55<br>60<br>55<br>60<br>55<br>60<br>56<br>56<br>56<br>60<br>56<br>60<br>56<br>60<br>56<br>60<br>57<br>66<br>70<br>87<br>10<br>87<br>10<br>87<br>10<br>87<br>10<br>87<br>10<br>87<br>10<br>87<br>10<br>87<br>10<br>87<br>10<br>87<br>10<br>87<br>10<br>87<br>10<br>87<br>10<br>87<br>10<br>87<br>10<br>87<br>10<br>87<br>10<br>87<br>10<br>87<br>10<br>87<br>10<br>87<br>10<br>87<br>10<br>87<br>10<br>87<br>10<br>80<br>10<br>80<br>10<br>80<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 瘇油<br>繎<br>伯                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 229 μ g/m <sup>3</sup><br>32 9 μ g/m <sup>3</sup><br>54 7<br>56 7<br>56 7<br>51 3<br>17 3<br>18 3<br>19 3<br>19 1<br>19 3<br>19 1<br>19 1<br>19 3<br>19 3                                                                                            | 11.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 自動車<br>(EC2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (境)<br>因子1<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>20<br>11<br>20<br>11<br>20<br>11<br>20<br>11<br>20<br>20<br>00<br>00<br>00<br>20<br>00<br>20<br>20<br>00<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 二次生成<br>(CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1通<br>周子 1<br>17.8<br>17.0<br>17.0<br>17.0<br>17.4<br>17.7<br>17.8<br>17.8<br>17.8<br>17.8<br>17.8<br>17.8<br>17.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 王<br>海路線<br>村でん<br>とし                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ◆ 拳 ◆<br>● 小<br>● 一<br>● 一<br>● 1<br>● | 寄与割合                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 因子の由来<br>(推定)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 今番//<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 寄与割合                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 因子の<br>(推定)<br>(推定)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 因本V<br>202<br>1.6<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 土壌・<br>道路粉じん                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 困年10<br>89.7<br>89.7<br>89.7<br>11.9<br>89.7<br>20.7<br>15.0<br>10.1<br>10.1<br>10.1<br>10.1<br>10.4<br>10.4<br>10.4<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1<br>(EC2)<br>自造<br>社子                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 因十17<br>74<br>714<br>714<br>714<br>715<br>108<br>108<br>150<br>855<br>855<br>855<br>855<br>855<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 自動車<br>(EC2)<br>毎塩粒子                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 因十四<br>17.1<br>17.1<br>17.1<br>17.1<br>17.5<br>17.5<br>17.5<br>17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 国動車<br>(EC1)<br>(イオマス )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 困十田<br>1239<br>1239<br>1239<br>2356<br>2355<br>2356<br>2355<br>2355<br>2355<br>2355<br>2355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 王<br>王<br>(CI)<br>(CI)<br>(CI)<br>(CI)<br>(CI)<br>(CI)<br>(CI)<br>(CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 国本部での1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 重<br>業<br>が<br>が<br>が<br>が<br>が<br>が<br>が<br>が<br>が<br>が<br>が<br>が<br>が<br>が<br>の<br>が<br>の<br>が<br>の                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 時間では、1997年1月19日の1997年1月19日の1997年1月19日の1997年1月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日の1997年11月19日0月1997年11月19月19月19月19月19月19月19月19月19月19月19月19月1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 画器やいく                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 城市1<br>1144<br>1144<br>1144<br>1245<br>2558<br>2558<br>2558<br>2558<br>2558<br>2558<br>2558<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (CI)<br>(CI)<br>(CI)<br>(NO3)<br>(SO4)<br>(SO4)<br>(SO4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 道 道 一面 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 画<br>(EC1)<br>(EC1)<br>(EC1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 大<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 寄与割合                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 因子の由来」                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 秋季、追認治<br>成分<br>成分<br>日日<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 寄与割合                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 国本のの市本                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 医子V<br>17.9<br>17.9<br>17.9<br>31.2<br>31.2<br>31.2<br>31.2<br>31.2<br>50.3<br>50.3<br>50.3<br>50.3<br>51.5<br>15.7<br>15.4<br>15.4<br>15.4<br>15.4<br>28.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | イオマス<br>埴暦子                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 因子V<br>352<br>352<br>34<br>411<br>411<br>33<br>711<br>33<br>00<br>465<br>00<br>106<br>26<br>33<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 調算<br>(ECI)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 因并IV<br>12.9<br>12.9<br>12.9<br>12.4<br>11.1<br>11.1<br>11.1<br>11.1<br>11.1<br>11.1<br>11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 以<br>(son)<br>(son)<br>(son)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 困子IV<br>318<br>714<br>714<br>714<br>714<br>714<br>725<br>53<br>53<br>53<br>53<br>53<br>53<br>73<br>11<br>00<br>318<br>318<br>335<br>335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 問題<br>開<br>開<br>開<br>で<br>の<br>に<br>し<br>し<br>に<br>に<br>に<br>に<br>に<br>に<br>に<br>に<br>に<br>に<br>の<br>に<br>に<br>の<br>に<br>の<br>に<br>の<br>に<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 困子田<br>482<br>572<br>572<br>431<br>651<br>651<br>651<br>651<br>651<br>164<br>164<br>120<br>333<br>333<br>389<br>389<br>389<br>389<br>389<br>389<br>389<br>389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 田<br>田<br>田<br>田<br>田<br>田<br>田<br>田<br>田<br>田<br>田<br>田<br>田                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 因子田<br>139<br>139<br>135<br>135<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 31.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 油」<br>油(<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 図子世で <sup>11</sup><br>第7世で<br>200<br>212<br>212<br>14.0<br>15.5<br>25.5<br>25.5<br>25.5<br>25.5<br>25.5<br>25.5<br>25.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 人<br>So<br>成<br>后<br>目)目)拿<br>Li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 因子化化学<br>(15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15 | 11.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ■<br>村<br>子                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 職事工<br>国本<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ■<br>一<br>二<br>)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 国際<br>国家<br>1900<br>1900<br>1900<br>131<br>131<br>131<br>131<br>131<br>131<br>131<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L汝生成<br>NO₃)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 國本,一度調本,<br>國本,一度調本,<br>EE1-Pyra<br>EE1-Pyra<br>EE1-Pyra<br>OC1<br>OC1<br>OC1<br>OC1<br>OC3<br>OC3<br>OC3<br>OC3<br>OC3<br>OC3<br>OC3<br>OC3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 寄与割合                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 困子の由来<br>〔推定〕<br>〔                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 國權,<br>高<br>EC1-Pyro<br>EC1-Pyro<br>CC1<br>OC2<br>OC3<br>OC3<br>OC3<br>OC3<br>OC3<br>OC3<br>OC3<br>OC3<br>OC3<br>OC3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 寄与割合                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 因子の由来<br>(推定) (<br>(推定) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 因子VI<br>112<br>28.7<br>112<br>28.7<br>113.5<br>113.5<br>113.5<br>11.0<br>0.0<br>11.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 沙<br>也成                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 因子V<br>5.6<br>5.6<br>13.1<br>14.0<br>14.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 次生成<br>103)<br>(C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 254<br>254<br>- 06<br>- 05<br>- 05<br>- 05<br>- 05<br>- 05<br>- 10.5<br>- 13.9<br>- 21.7<br>23.1<br>- 23.1<br>- 23.1<br>- 19.4<br>- 19.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 嬢・<br>路券じん                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 因子IV<br>64.4<br>64.4<br>35.8<br>35.5<br>35.5<br>36.5<br>38<br>23.1<br>23.1<br>23.1<br>23.1<br>25.1<br>00<br>00<br>00<br>00<br>00<br>1.1<br>1.1<br>1.1<br>1.1<br>25.1<br>25.1<br>25.1<br>25.1<br>25.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 動車<br>(C2)<br>(C2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 西子IV<br>68<br>68<br>68<br>68<br>118<br>170<br>170<br>180<br>180<br>180<br>153<br>148<br>489<br>489<br>489<br>489<br>314<br>403<br>1493                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 壇<br>充<br>子<br>士道                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 因子田<br>383<br>383<br>383<br>383<br>383<br>381<br>227<br>227<br>227<br>237<br>381<br>410<br>410<br>410<br>258<br>411<br>410<br>538<br>411<br>304<br>304<br>40<br>100<br>00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 国語<br>動用<br>動用<br>の。<br>で<br>数<br>数<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>の<br>の<br>、<br>の<br>の<br>の<br>、<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の | 因十日<br>101<br>101<br>145<br>145<br>145<br>145<br>145<br>145<br>145<br>145<br>124<br>153<br>102<br>153<br>162<br>162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 次)<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 図0世紀 <sup>11,10</sup><br>第2月11<br>302<br>302<br>302<br>14,6<br>14,6<br>377<br>44,9<br>377<br>44,9<br>377<br>44,9<br>377<br>44,9<br>377<br>44,9<br>377<br>14,6<br>16,8<br>16,8<br>16,8<br>16,8<br>16,8<br>16,8<br>16,8<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | バオオ<br>が<br>で<br>た<br>い<br>か<br>い<br>か<br>い<br>た<br>し<br>い<br>で<br>ろ<br>ス<br>イ<br>し<br>い<br>た<br>く<br>と<br>で<br>ろ<br>で<br>ろ<br>で<br>ろ<br>で<br>ろ<br>で<br>ろ<br>で<br>ろ<br>で<br>ろ<br>で<br>ろ<br>で<br>ろ<br>で                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 図り4 (4/m <sup>3</sup><br>四日 (100 (100 (100 (100 (100 (100 (100 (10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 自動車<br>EC2)<br>(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 第二日<br>1111<br>1111<br>1111<br>1111<br>1111<br>1111<br>1111<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 福<br>村<br>子<br>ノ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 国本11<br>11<br>15<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>16<br>8<br>310<br>16<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>18<br>5<br>42<br>8<br>312<br>542<br>8<br>312<br>542<br>8<br>312<br>542<br>8<br>312<br>542<br>8<br>312<br>542<br>8<br>11<br>1<br>1<br>55<br>75<br>5<br>75<br>5<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 前面<br>「<br>御」<br>「<br>一<br>「<br>一<br>「<br>一<br>「<br>一<br>「<br>一<br>一<br>一<br>一<br>一<br>二<br>四<br>一<br>御<br>一<br>一<br>一<br>四<br>一<br>四<br>一<br>四<br>一<br>四<br>一<br>四<br>一<br>四<br>一<br>四<br>一                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 寄与割合                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 困子の由来 <sup>3</sup><br>(推定)<br>(推定)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 寄与割合                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 医の不足、その、「」」で「」。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ## Matrix         10.0 $\mu/\nu^{-1}$ ## Matrix         10.0 $\mu/\nu^{-1}$ ## Matrix         10.0 $\mu/\nu^{-1}$ ## Matrix         21.1 $\mu/\nu^{-1}$ ## Matrix         21.1 $\mu/\nu^{-1}$ | #*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Method         Method<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M.         M.< | Method         Method< |

各因子における成分を相対比で表示。38%以上を赤で、20%から35%をオレンジで色づけしている。それぞれの成分について、各因子の合計が100%になる。 寄与割合はPM.<sub>5</sub>の秤量質量濃度に対する割合(%)である。

#### 第4章 CMB法

4-1 大気環境データのスクリーニング

4-1-1 大気環境データ

平成 20 年度の PM2.5 調査結果を使用する。なお、金属成分(中長寿命)を含めるため、炭素 成分、イオン成分、金属成分(短寿命)データは1週間分を平均した。

4-1-2 イオンバランス、マスクロージャーモデルによるチェック

2-1-2、2-1-3と同じ。国立の秋季後半のデータを解析からはずした。

4-1-3 使用する成分の検討

検出下限値未満のデータが2割以上であった成分は解析に使用しなかった。イオン成分および 金属成分として測定されている成分について、どちらを解析に使用するか、検出下限値未満とな ったデータの数により検討した。有機炭素、アンモニウムイオン、硝酸イオン、硫酸イオン、塩 化物イオンは二次生成に由来するため(一次粒子にも含まれる)、計算の際、フィッティングの 対象としなかった。また、ヨウ素は発生源プロファイル(4-2 を参照のこと)に含まれていな かった。この結果、EC、K(イオン)、Ca(イオン)、Na(金属)、Al、V、Mn、Sc、Cr、Fe、 Zn、As、Se、Br、Sb、Laの16成分により計算を行った。

4-2 発生源プロファイル

4-2-1 発生源プロファイルの整理

環境省の調査などで使用されている発生源プロファイル(既存プロファイル)に含まれる7発 生源(土壌・道路粉じん、海塩粒子、鉄鋼、重油燃焼、廃棄物焼却、自動車排出ガス、ブレーキ 粉じん)について、東京都が行った平成20~21年度の発生源調査結果で更新可能か検討し、土 壌・道路粉じんと廃棄物焼却を候補とした。また、新たな発生源として調査を行った植物質燃焼 類(野焼き)の追加を検討した。

計算に使用したプロファイルは以下の5パターンである。

- 0 既存プロファイルをそのまま使用。
- 1 既存プロファイルに植物質燃焼類(都の調査結果と EPA の SPECIATE から得られたデー タを合成)を追加。
- 2 既存プロファイルに植物質燃焼類を追加し、土壌・道路粉じんを都の調査結果で更新。
- 3 既存プロファイルに植物質燃焼類を追加し、廃棄物焼却を都の調査結果で更新。
- 4 既存プロファイルに植物質燃焼類を追加し、土壌・道路粉じんと廃棄物焼却を都の調査結果で更新。

4-2-2 発生源プロファイルの検討

各パターン、全データの平均に対して、CMB 法による発生源寄与割合の計算を行った結果で ある。v-OC とは、主として二次有機粒子であると考えられる。大気環境調査の OC 濃度から一 次粒子として割り当てられた OC 濃度を差し引いて 1.4 倍した。アンモニウムイオン、硝酸イオ ン、硫酸イオン、塩化物イオンは大気環境調査の結果をそのまま用いている。なお、使用したソ フトは EPA CMB 8.2 である。



パターン0(既存プロファイル)

#### パターン1(植物質追加)



パターン3(植物質追加、廃棄物更新)



パターン2(植物質追加、土壌更新)



パターン4(植物質追加、土壌と廃棄物更新)



その結果、以下のような特徴がみられた。

- ・廃棄物焼却を更新すると、しない場合に比べて、植物質燃焼類が非常に大きくなる。
- ・土壌・道路粉じんを更新しても、各発生源の寄与割合に大きく影響しない。

パターン1から4のうち、どれを採用するか検討した結果、パターン1が適当であると判断された。その理由は以下のとおりである。

- 決定係数(モデルの当てはまり、計算結果がどれだけ実測値を説明できているかを示す。0 から1の値をとり、1に近いほどよい)がパターン1を使用したとき、最もよくなったため。
  - パターン1: 0.77887
  - パターン2: 0.76685
  - パターン3: 0.75637
  - パターン4: 0.74722
  - 参考 パターン0: 0.77803
- 2 解析型モデルによる計算結果では野焼きの寄与はほとんど0であったため。

参考として、計算に使用したプロファイルの一覧を次頁に示す。PNOのMIZO1~7までが既存 プロファイルに含まれる7発生源、TMG1~3が既存プロファイルの更新あるいは新たに追加を 検討した発生源である。

(詳細は、P369 資料を参照)

| 0.         SID         ECC         EU         CU         MAD         VC         VU         CC         CU         MOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0         SID         SIZE         ECC         ECU         OCC         OCU         NH4U         KC         KU         CAC         CAU         CLC         OLU           Z25         FNN         FINE         TERE 03         TORE 10         258E-03         358E-04         558E-04         258E         558E-04         258E-04         258E-04         258E-04         258E-04         258E         558E-04         258E-04         258E-04         258E-04         258E-04         258E-04         258E-04         258E         258E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NO3C NO3U<br>-04 1.93E-04 1.18E-04<br>-02 0.00E+00 0.00E+00<br>-03 0.00E+00 0.00E+00<br>-04 0.00E+00 0.00E+00<br>-02 0.00E+00 0.00E+00<br>-02 0.00E+00 0.00E+00<br>-03 0.00E+00 0.00E+00<br>-03 1.32E-03 2.63E-04<br>-04 1.32E-03 4.33E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CRC CRU<br>CRC CRU<br>CRC CRU<br>1.55E-04<br>1.55E-04<br>1.55E-04<br>1.55E-04<br>1.55E-04<br>2.79E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-04<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05<br>1.05E-05                                                                                                                                                                                                                                                                                   | LAC LAU<br>-06 3.13E-05 1.05E-05<br>-09 9.00E-09 2.70E-09<br>-05 9.75E-06 9.75E-06<br>-06 4.00E-05 4.00E-05<br>-04 7.70E-06 7.70E-06<br>-06 3.41E-07 3.41E-08<br>-04 7.00E-06 1.40E-06<br>-06 1.16E-05 2.31E-06<br>-06 0.00E+00 0.00E+00<br>-00 0.00E+00 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0         SID         SIZE         ECC         ECU         OCC         OCU         NH4U         KC         KU         CAC         CAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CLU<br>002 6.826<br>002 6.826<br>002 6.826<br>004 9.206<br>004 2.006<br>01 2.706<br>01 2.756<br>01 2.556<br>01 2.5566<br>01 2.5566<br>01 2.5566<br>01 2.5566<br>01 2.5566<br>01 2.5566<br>01 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SCU<br>55352<br>5006 2.646<br>007 1.198<br>007 1.198<br>006 4.646<br>006 4.646<br>006 4.646                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SBU<br>05 7.426<br>005 7.426<br>005 9.006<br>005 1.966<br>005 1.966<br>006 1.216<br>006 1.216<br>006 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Image: Construct on the state of t                                                                                                                                                                 | CLC<br>CLC<br>3.355<br>4.5516<br>4.5516<br>4.2506<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.2006<br>4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SCC<br>SCC<br>SCC<br>SCC<br>SCC<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SBC<br>SBC<br>6 1.30E-<br>5 1.40E-<br>6 6.90E-<br>6 1.96E-<br>6 6.03E-<br>6 6.03E-<br>5 0.00E-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Image: Not on the state of the sta                                                                                                                                                                 | CAU<br>5.85640<br>5.85640<br>5.85640<br>5.85640<br>5.85640<br>1.4660<br>1.4660<br>1.4660<br>5.53660<br>5.53660<br>5.53660<br>5.53660<br>5.53660<br>5.53660<br>5.53660<br>5.53660<br>5.53660<br>5.53660<br>5.53660<br>5.53660<br>5.53660<br>5.53660<br>5.53660<br>5.53660<br>5.53660<br>5.53660<br>5.53660<br>5.53660<br>5.53600<br>5.53600<br>5.53600<br>5.53600<br>5.53600<br>5.53600<br>5.53600<br>5.53600<br>5.53600<br>5.53600<br>5.53600<br>5.53600<br>5.53600<br>5.53600<br>5.53600<br>5.53600<br>5.53600<br>5.53600<br>5.53600<br>5.53600<br>5.53600<br>5.53600<br>5.53600<br>5.53600<br>5.53600<br>5.53600<br>5.53600<br>5.53600<br>5.53600<br>5.53600<br>5.53600<br>5.53600<br>5.53600<br>5.53600<br>5.53600<br>5.536000<br>5.53600<br>5.53600<br>5.536000<br>5.53600<br>5.53600<br>5.53600<br>5.53600<br>5.53600<br>5.53600<br>5.53600<br>5.53600<br>5.53600<br>5.53600<br>5.536000<br>5.536000<br>5.536000<br>5.536000<br>5.536000<br>5.536000<br>5.536000<br>5.536000<br>5.536000<br>5.536000<br>5.536000<br>5.53600000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MNU<br>MNU<br>3.366-0<br>3.366-0<br>3.366-0<br>3.306-0<br>1.746-0<br>1.746-0<br>1.936-0<br>1.936-0<br>1.936-0<br>1.936-0<br>1.086-0<br>2.006-0<br>2.006-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BRU<br>2.07E-0<br>2.07E-0<br>2.07E-0<br>3.50E-0<br>8.50E-0<br>2.45E-0<br>2.45E-0<br>2.45E-0<br>2.45E-0<br>3.80E-0<br>3.80E-0<br>5.60E-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (0)         SID         SIZE         ECC         ECU         OCC         OCU         NH4U         KC         KU           ZO1         RCAD         FINE         128E-03         500E-03         500E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CAC<br>5.52E-02<br>1.17E-02<br>4.51E-02<br>8.51E-02<br>1.16E-03<br>1.46E-03<br>3.18E-02<br>3.214E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MNC<br>5.80E-03<br>5.80E-08<br>5.80E-08<br>2.20E-04<br>1.20E-04<br>1.93E-05<br>1.93E-05<br>7.20E-04<br>1.24E-03<br>5.40E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BRC<br>4.64E-06<br>1.90E-03<br>8.50E-06<br>8.30E-04<br>8.30E-04<br>4.90E-05<br>3.398E-05<br>3.398E-05<br>6.26E-04<br>2.80E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ID         SIZE         ECC         ECU         OCC         OCU         NH4C         NH4U         KC           ZO1         ROAD         FINE         238E-03         506E-03         506E-03         506E-04         127E-02           ZO3         FOUE         FINE         2380E-03         500E+03         500E+00         000E+00         000E+00         010E+00         110E-02           ZO3         FULE         FINE         530E-03         500E+03         500E+03         500E+00         000E+00         000E+00         010E+00         010E+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | KU<br>3.339E-03<br>1.10E-03<br>2.64E-03<br>2.64E-03<br>2.64E-03<br>2.00E-02<br>1.97E-05<br>1.97E-04<br>1.14E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VU<br>3.45E-05<br>1.74E-08<br>3.45E-05<br>1.74E-08<br>3.19E-03<br>3.19E-03<br>1.35E-05<br>7.25E-07<br>1.18E-05<br>5.69E-05<br>5.69E-05<br>5.69E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SEU<br>5.50E-07<br>3.60E-08<br>5.11E-05<br>5.11E-05<br>0.00E+00<br>1.67E-07<br>1.75E-06<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| IDE         SIZE         ECC         EU         OCC         OCU         NH4C         NH4U         N           ZO1         ROAD         FINE         128E-02         4.10E-03         6.90E-02         2.83E-02         9.68E-04         9.68E-04           ZO2         REN         FINE         2.80E-08         3.00E-01         1.28E-01         0.00E+00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CC<br>1.127E-02<br>1.127E-02<br>1.132E-02<br>8.50E-04<br>1.97E-04<br>3.50E-04<br>3.50E-04<br>8.79E-04<br>8.79E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | /C<br>5.80E-04<br>5.80E-04<br>6.38E-04<br>6.38E-03<br>7.25E-06<br>5.90E-05<br>5.90E-05<br>5.90E-05<br>2.31E-04<br>2.84E-04<br>0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SEC<br>1.43E-07<br>1.20E-07<br>5.11E-05<br>5.11E-05<br>0.00E+00<br>1.67E-06<br>3.50E-06<br>0.00E+00<br>0.00E+00<br>0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ID         SIZE         ECC         EUU         OCC         OCU         NH4C         N           Z01         ROAD         FINE         128E-02         4.10E-03         6.90E-02         2.83E-02         6.05E-03           Z02         SEA         FINE         2.80E-03         5.00E-03         0.00E+00         0.00E+00         0.00E+00           Z03         IRON         FINE         5.00E-02         5.00E-02         0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.1H4U<br>9.68E-04<br>0.006E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+000E+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ALU<br>7.66E-03<br>2.90E-08<br>2.00E-03<br>1.10E-03<br>8.40E-04<br>1.57E-04<br>1.57E-04<br>1.57E-02<br>1.58E-02<br>1.76E-03<br>7.40E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VSU<br>8.70E-06<br>8.70E-09<br>1.03E-04<br>1.03E-04<br>1.50E-04<br>1.50E-07<br>3.69E-07<br>3.69E-07<br>1.40E-06<br>0.000E+00<br>0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ID         SID         SIZE         ECC         ECU         OCC         OCU         N           Z01         ROAD         FINE         128E-02         4.10E-03         6.90E-02         2.83E-02         0.00E+00         0.00E+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>1144C<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LC /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>(SC</li> <li>1.13E-05</li> <li>2.90E-04</li> <li>1.03E-04</li> <li>1.03E-04</li> <li>1.50E-04</li> <li>3.69E-06</li> <li>3.69E-06</li> <li>2.20E-05</li> <li>0.00E+00</li> <li>0.00E+00</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| IO         SID         SIZE         ECC         ECU         OCC         OC           Z01         ROAD         FINE         128E-02         4.10E-03         6.90E-03         0.00E+00           Z02         SEA         FINE         2.800E-08         2.800E-03         0.00E+00         0.00E+00           Z03         FUEL         FINE         2.800E-01         1.25E-01         0.00E+00         0.00E+00           Z03         FUEL         FINE         5.00E-02         5.00E-02         0.00E+00         0.00E+00           Z04         FUEL         FINE         5.00E-02         5.00E-02         0.00E+00         0.00E+00           Z05         REFUSE         FINE         1.55E-01         7.60E-02         2.47E-01           Z06         CAR         FINE         1.55E-01         7.60E-02         3.88E-02           AG3         BIOMASS FINE         9.71E-02         1.94E-02         4.15E-01           Z01         REFUSE         FINE         7.80E-02         1.94E-02           Z03         FINE         7.80E-02         1.94E-02         3.64E-01           Z03         FINE         7.80E-02         1.94E-02         3.64E-01           Z03         FINE<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IAU / / / / / / / / / / / / / / / / / / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NU<br>7.96E-04<br>8.70E-09<br>1.03E-02<br>1.03E-02<br>1.30E-02<br>6.24E-05<br>6.52E-04<br>1.30E-02<br>6.52E-04<br>7.21E-04<br>7.21E-04<br>2.00E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| IO       SID       SIZE       ECC       ECU       O         Z01       ROAD       FINE       1.28E-02       4.10E-03       5.00E-03       5.00E-03       5.00E-03       5.00E-03       5.00E-03       5.00E-02       1.02       5.00E-02       5.00E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CC<br>CC<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+000<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+00<br>0006+000<br>0006+000<br>0006+0000<br>0006+0000<br>0006+0000<br>0006+000<br>0006+000<br>0006+0000<br>0006+0000<br>0006+0000<br>0006+0000<br>0006+0000<br>0006+0000<br>0006+0000<br>0006+0000<br>0006+0000<br>0006+0000<br>0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AC AC AC 1.25E-02<br>3.04E-01<br>1.36E-02<br>1.36E-02<br>1.00E-02<br>1.20E-01<br>1.20E-01<br>1.20E-01<br>3.63E-03<br>3.63E-03<br>3.65E-03<br>3.65E-03<br>1.18E-01<br>1.18E-01<br>3.55E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NC<br>1.31E-03<br>2.90E-08<br>5.15E-02<br>5.15E-02<br>5.15E-02<br>5.24E-04<br>3.26E-03<br>3.26E-03<br>3.26E-03<br>3.26E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03<br>3.61E-03. |
| 10       SID       SIZE       ECC       ECC         201       ROAD       FINE       128E-02         203       IRON       FINE       280E-08         204       FUEL       FINE       280E-08         205       FUEL       FINE       2800E-03         205       FUEL       FINE       280E-04         205       CAR       FINE       5.00E-02         206       CAR       FINE       5.00E-02         207       BRAKE       FINE       5.00E-02         206       CAR       FINE       5.00E-02         201       RCAR       FINE       5.00E-02         202       BIOMASS FINE       0.71E-02       1         203       IRON       FINE       7.80E-04       2         203       IRON       FINE       7.80E-04       2         204       FINE       FINE       7.80E-04       2         205       FINE       FINE       7.80E-04       2         203       IRON       FINE       7.80E-04       2         204       FINE       FINE       7.80E-04       2         204       FINE       FINE       2.16E-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CU<br>CU<br>SI CU<br>SI CU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 04U N<br>149E-04<br>60E-02<br>000E+00<br>000E+00<br>000E+00<br>16E-03<br>16E-03<br>16E-03<br>883E-04<br>883E-04<br>008E-02<br>008E-02<br>008E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EU Z<br>342E-03<br>370E-08<br>577E-02<br>577E-02<br>510E-03<br>510E-03<br>539E-05<br>336E-03<br>336E-03<br>336E-03<br>336E-03<br>2926-05<br>2022-02<br>2022-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 40       SID       SID       SID       SID       SID         201       ROAD       FINE       202       SEA       FINE       203         203       IRON       FINE       FINE       203       FINE       203         203       FUEL       FINE       FINE       203       FINE       204         205       SEA       FINE       FINE       203       FINE       204         203       FUEL       FINE       FINE       204       FINE       204         603       BRAKE       FINE       FINE       203       SIZE       204         203       FOAD2       FINE       FINE       204       FINE       205         204       FUEL       FINE       FINE       203       SIZE       204         203       FOAD2       FINE       FINE       204       FINE       205         205       FUEL       FINE       FINE       204       204       205         204       FUEL       FINE       FINE       205       204       206       204         205       FUEL       FINE       FINE       205       206       206       206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 04C S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EC<br>31E-02<br>90E-07<br>557E-01<br>10E-03<br>89E-04<br>68E-02<br>68E-02<br>68E-02<br>00E-04<br>20<br>68E-02<br>00E-04<br>20<br>12<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <ul> <li>40</li> <li>201</li> <li>202</li> <li>203</li> <li>204</li> <li>204</li> <li>204</li> <li>204</li> <li>204</li> <li>205</li> <li>205</li> <li>205</li> <li>206</li> <li>206</li> <li>207</li> <li>208</li> <li>201</li> <li>202</li> <li>203</li> <li>204</li> &lt;</ul>                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : ППППППППППППП<br>> № 20 20 2 4 - 2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ЩЩЩЩЩЩЩЩЩЩЩ<br>Щ № 0 − 4 0 0 0 4 − −                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <sup>6</sup> | DAD<br>AD<br>EA<br>ON<br>FIN<br>FIN<br>FIN<br>FIN<br>AR<br>FIN<br>FIN<br>FIN<br>FIN<br>FIN<br>FIN<br>FIN<br>FIN<br>FIN<br>FIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D SIZ<br>DAD FIN<br>EA FIN<br>ON FIN<br>JEL FIN<br>JEL FIN<br>AR FIN<br>AR FIN<br>AR FIN<br>COMASS FIN<br>OMASS FIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MIZO<br>MIZO<br>MIZO<br>MIZO<br>MIZO<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO<br>RF<br>MIZO | MIZO1 RC<br>MIZO2 SE<br>MIZO2 SE<br>MIZO3 IR<br>MIZO3 IR<br>MIZO5 RE<br>MIZO5 RE<br>MIZ | PNO<br>MIZO1 SI<br>MIZO2 SE<br>MIZO2 SE<br>MIZO3 FL<br>MIZO5 FL<br>MIZO5 C/<br>MIZO7 BF<br>MIZO7 BF<br>MIZO7 BF<br>MIZO7 BF<br>MIZO7 BF<br>MIZO7 BF<br>MIZO7 BF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Cは濃度、Uは誤差。単位はg/g

プロファイルー覧

#### 4-3 CMB 法による計算

4-3-1 一般環境と道路沿道

データを一般環境(下連雀は一般環境とした)と道路沿道に分類し、それぞれ季節変動を調べた(結果は P361、CMB 法による計算結果 1 に示した)。自動車排出ガスは一般環境に比べて道路沿道が高く、季節変動では秋季が高い。これは EC の変動と一致している。ブレーキ粉じんも自動車排出ガスと同様の結果を示した。



4-3-2 区部と多摩部

一般環境のデータを区部と多摩部に分類し、それぞれ季節変動を調べた(結果は P 362、CMB 法による計算結果 2 に示した)。重油燃焼は区部が高い(V の変動と一致)。V は船舶から放出されている可能性があり、東京湾に近い区部や南寄りの風が吹く夏季に重油燃焼が高いことと合致 する(海塩粒子も南寄りの風が吹く夏季が高い)。土壌・道路粉じんは区部と多摩部でほとんど 差がないが、大陸からの気塊が流れてくる春季と冬季が高いという特徴がみられた。植物質燃焼 類は多摩部が高く、野焼きが区部よりも多摩部で多く行われていると考えられることと合致する。 ただし、植物質燃焼類の季節変動は春季と秋季における寄与がまったくないという結果になって おり、今後の課題であろう。





| データ         All         一般         道路         春           康範徴院派預         追加         追加         追加         追加         海           康美遊路労じん         原葉物焼却         21.0         20.3         22.1            康美遊路労じん         0.46         0.51         0.40              康美遊路労じん         0.46         0.51         0.40               東道路教にん         0.46         0.51         0.40 </th <th>一般 夏、一般           当加&lt;         追加           18.0         19.7           0.71         0.19           0.77         0.19           0.77         0.19           0.77         0.19           0.77         0.19           0.77         0.19           0.25         0.25           1.11         1.54           1.57         1.89           0.028         0.38           0.028         0.38           0.028         0.36           1.92         2.34           1.92         2.327           1.92         2.327           1.92         2.327           1.33         0.37           1.33         0.37           1.33         0.37           1.33         0.37           1.2.1         1.2.1           1.2.1         1.2.1           1.2.4         1.01           1.2.4         1.01           1.2.4         1.01</th> <th></th> <th>▲、一般<br/>通加<br/>1155<br/>0.480<br/>0.480<br/>0.480<br/>0.480<br/>0.485<br/>0.485<br/>0.485<br/>0.24<br/>0.485<br/>0.485<br/>0.490<br/>0.41<br/>0.58<br/>0.41<br/>0.58<br/>0.481<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68<br/>0.68</th> <th>一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一</th> <th><u>夏、道路</u><br/>進力<br/>進力<br/>120.5<br/>0.31<br/>2.03<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.31<br/>0.2<br/>0.31<br/>0.2<br/>0.31<br/>0.2<br/>0.31<br/>0.2<br/>0.31<br/>0.2<br/>0.00<br/>0.2<br/>0.00<br/>0.2<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.000<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00</th> <th>  X · · · · · · · · · · · · · · · · · ·</th> <th><sup>∞</sup>、<br/>画加<br/>一<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21<br/>10.21</th> | 一般 夏、一般           当加<         追加           18.0         19.7           0.71         0.19           0.77         0.19           0.77         0.19           0.77         0.19           0.77         0.19           0.77         0.19           0.25         0.25           1.11         1.54           1.57         1.89           0.028         0.38           0.028         0.38           0.028         0.36           1.92         2.34           1.92         2.327           1.92         2.327           1.92         2.327           1.33         0.37           1.33         0.37           1.33         0.37           1.33         0.37           1.2.1         1.2.1           1.2.1         1.2.1           1.2.4         1.01           1.2.4         1.01           1.2.4         1.01                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ▲、一般<br>通加<br>1155<br>0.480<br>0.480<br>0.480<br>0.480<br>0.485<br>0.485<br>0.485<br>0.24<br>0.485<br>0.485<br>0.490<br>0.41<br>0.58<br>0.41<br>0.58<br>0.481<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68 | 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>夏、道路</u><br>進力<br>進力<br>120.5<br>0.31<br>2.03<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.2<br>0.31<br>0.2<br>0.31<br>0.2<br>0.31<br>0.2<br>0.31<br>0.2<br>0.00<br>0.2<br>0.00<br>0.2<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.000<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                               | X · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                        | <sup>∞</sup> 、<br>画加<br>一<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21<br>10.21 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 他的質素焼類 追加 in i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ●加 追加 追加<br>18.0 19.7<br>0.77 0.19<br>0.77 0.19<br>0.25 0.25<br>1.11 1.54<br>1.11 1.54<br>1.57 1.89<br>0.028 0.36<br>0.28 0.36<br>0.28 0.36<br>1.57 1.89<br>1.83 0.37<br>1.92 2.347<br>1.33 0.37<br>1.24 1.01<br>1.24 1.01<br>1.24 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 道加<br>1380 000<br>150 000<br>150 000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 道加<br>道加<br>0.88<br>0.40<br>0.40<br>0.44<br>0.48<br>0.44<br>0.44<br>1.155<br>6.86<br>6.86<br>6.86<br>6.86<br>6.86<br>0.24<br>1.155<br>2.34<br>2.34<br>3.25<br>3.33<br>3.25<br>3.33<br>3.25<br>0.87<br>0.08<br>8<br>0.028<br>0.24<br>0.028<br>0.24<br>0.028<br>0.24<br>0.028<br>0.24<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.0280<br>0.02800<br>0.02800<br>0.02800<br>0.0280000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 道加<br>道加<br>200<br>0.63<br>0.63<br>0.22<br>0.33<br>0.53<br>0.53<br>0.53<br>0.50<br>0.50<br>0.50<br>0.50                                                                                                                                                                                                                                                                                                                                                                                              | 尚加<br>第205<br>205<br>205<br>205<br>0.205<br>0.205<br>0.203<br>0.203<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.3144<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.314<br>0.31 | 道加<br>道加<br>25.3<br>0.08<br>0.65<br>0.44<br>0.65<br>0.44<br>0.65<br>0.93<br>5.30<br>0.93<br>6.93<br>0.93<br>6.93<br>0.93<br>6.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0                                                                                                                                                | 道加<br>道力<br>22.9<br>0.85<br>0.85<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 廃棄物族却         21.0         20.3         22.1           質量濃度         21.0         20.3         22.1           第塩指わ子         0.25         0.23         0.28           海塩指子         0.25         0.23         0.28           海塩排出ガス         0.32         0.36         0.36           単物焼焼         0.96         0.88         1.08           ●         ●         0.57         0.69         0.66           動車排出ガス         3.07         2.35         4.15           レーキ粉じん         0.43         0.34         0.46           ●         ●         0.50         0.30         0.46           ●         ●         0.50         0.30         0.46           ●         ●         0.56         0.50         7.93           ●         ●         ●         ●         ●         ●           -         ●         ●         ●         ●         ●           -         ●         ●         ●         ●         ●         ●           -         ●         ●         ●         ●         ●         ●         ●           -         ●         ●         ● <t< td=""><td>18.0         19.7           0.77         0.19.7           0.25         0.26           0.25         0.25           0.111         1.54           0.26         0.26           0.111         1.57           1.57         1.89           0.28         0.36           0.28         0.36           0.28         0.36           0.28         0.36           0.28         0.36           0.28         0.36           0.38         0.32           4.66         5.97           4.57         6.72           0.06         0.06           0.06         0.086           1.92         2.34           1.33         0.37           1.33         0.37           1.27         1.27           1.2.1         1.21           1.2.1         1.21           1.2.1         1.21           1.2.1         1.21           1.2.1         1.21           1.2.1         1.21</td><td>2.2.2<br/>0.15<br/>0.15<br/>0.15<br/>0.41<br/>0.37<br/>0.37<br/>0.37<br/>0.37<br/>0.37<br/>0.59<br/>1.98<br/>1.98<br/>1.98<br/>1.98<br/>1.98<br/>1.98<br/>1.98<br/>1.9</td><td>21:1<br/>0.88<br/>0.88<br/>0.40<br/>0.28<br/>0.40<br/>0.28<br/>0.24<br/>0.58<br/>6.86<br/>6.86<br/>6.86<br/>6.86<br/>6.86<br/>6.86<br/>0.24<br/>1.55<br/>0.24<br/>0.24<br/>0.24<br/>0.24<br/>0.24<br/>0.24<br/>0.28<br/>0.24<br/>0.28<br/>0.28<br/>0.28<br/>0.28<br/>0.28<br/>0.28<br/>0.28<br/>0.28</td><td>200<br/>0.63<br/>0.63<br/>0.22<br/>0.33<br/>0.50<br/>0.50<br/>0.50<br/>0.50<br/>0.00<br/>6.67<br/>4.75<br/>4.75<br/>0.08<br/>8<br/>4.75</td><td>20.5<br/>20.5<br/>0.02<br/>0.48<br/>0.31<br/>2.03<br/>0.60<br/>0.60<br/>0.60<br/>0.60<br/>0.60<br/>0.60<br/>0.61<br/>1.20<br/>0.60<br/>0.60<br/>0.00<br/>0.000<br/>0.000</td><td>25.3<br/>0.03<br/>0.03<br/>0.05<br/>0.04<br/>0.04<br/>0.05<br/>5.30<br/>0.93<br/>5.30<br/>0.98<br/>8.19<br/>8.19<br/>8.19<br/>8.19<br/>8.19<br/>8.19<br/>14.3<br/>14.3<br/>14.3<br/>14.3<br/>14.3<br/>2.55<br/>0.66<br/>14.3<br/>14.3<br/>14.3<br/>2.85<br/>8.10<br/>0.00<br/>0.00<br/>0.03<br/>5.3<br/>0.03<br/>0.03<br/>0.03<br/>0.03</td><td>22.9<br/>0.85<br/>0.85<br/>0.85<br/>0.58<br/>0.58<br/>0.58<br/>0.58<br/>8.98<br/>8.98<br/>8.98<br/>8.98<br/>8.98<br/>8.98<br/>8.98<br/>8</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18.0         19.7           0.77         0.19.7           0.25         0.26           0.25         0.25           0.111         1.54           0.26         0.26           0.111         1.57           1.57         1.89           0.28         0.36           0.28         0.36           0.28         0.36           0.28         0.36           0.28         0.36           0.28         0.36           0.38         0.32           4.66         5.97           4.57         6.72           0.06         0.06           0.06         0.086           1.92         2.34           1.33         0.37           1.33         0.37           1.27         1.27           1.2.1         1.21           1.2.1         1.21           1.2.1         1.21           1.2.1         1.21           1.2.1         1.21           1.2.1         1.21 | 2.2.2<br>0.15<br>0.15<br>0.15<br>0.41<br>0.37<br>0.37<br>0.37<br>0.37<br>0.37<br>0.59<br>1.98<br>1.98<br>1.98<br>1.98<br>1.98<br>1.98<br>1.98<br>1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21:1<br>0.88<br>0.88<br>0.40<br>0.28<br>0.40<br>0.28<br>0.24<br>0.58<br>6.86<br>6.86<br>6.86<br>6.86<br>6.86<br>6.86<br>0.24<br>1.55<br>0.24<br>0.24<br>0.24<br>0.24<br>0.24<br>0.24<br>0.28<br>0.24<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200<br>0.63<br>0.63<br>0.22<br>0.33<br>0.50<br>0.50<br>0.50<br>0.50<br>0.00<br>6.67<br>4.75<br>4.75<br>0.08<br>8<br>4.75                                                                                                                                                                                                                                                                                                                                                                             | 20.5<br>20.5<br>0.02<br>0.48<br>0.31<br>2.03<br>0.60<br>0.60<br>0.60<br>0.60<br>0.60<br>0.60<br>0.61<br>1.20<br>0.60<br>0.60<br>0.00<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25.3<br>0.03<br>0.03<br>0.05<br>0.04<br>0.04<br>0.05<br>5.30<br>0.93<br>5.30<br>0.98<br>8.19<br>8.19<br>8.19<br>8.19<br>8.19<br>8.19<br>14.3<br>14.3<br>14.3<br>14.3<br>14.3<br>2.55<br>0.66<br>14.3<br>14.3<br>14.3<br>2.85<br>8.10<br>0.00<br>0.00<br>0.03<br>5.3<br>0.03<br>0.03<br>0.03<br>0.03                                          | 22.9<br>0.85<br>0.85<br>0.85<br>0.58<br>0.58<br>0.58<br>0.58<br>8.98<br>8.98<br>8.98<br>8.98<br>8.98<br>8.98<br>8.98<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 再進成成         2.10         2.21           海道路号じん         0.46         0.51         0.40           海道路号         0.32         0.30         0.36           海道市法         0.32         0.30         0.36           海道市         0.32         0.30         0.36           海道市井出方式         0.32         0.30         0.36           動車井出方式         0.67         0.69         0.66           動車井出方式         3.07         2.35         4.15           レーキ粉じん         0.46         0.31         0.34           小の名         0.37         2.35         4.15           小小の名         3.07         2.35         4.15           小小のろ         3.94         4.13         3.68           市酸イオン         0.39         0.30         0.32           レーンム         2.19         2.14         2.27           前酸オイオン         1.32         1.32         1.33           つん(大分等)         1.24         1.32         1.33           二次合計         1.32         1.32         1.33           つん(大分等)         1.24         1.54         0.87           二次合い         1.32         1.32         1.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00         0.00           0.70         0.19           0.20         0.25           0.20         0.25           0.11         1.54           1.11         1.55           1.57         1.89           0.20         0.36           0.20         0.36           0.157         0.36           0.27         1.89           0.28         0.36           0.29         0.36           0.20         0.36           0.20         0.36           0.20         0.36           1.92         2.34           1.33         0.37           1.33         0.37           1.33         0.37           1.2.1         1.2.7           1.2.4         1.01           1.2.4         1.01           1.2.4         1.01           1.2.4         1.01                                                                                                                     | <ol> <li>2.5.2</li> <li>2.5.2</li> <li>0.15</li> <li>0.31</li> <li>0.31</li> <li>0.32</li> <li>0.326</li> <li>0.326</li> <li>0.59</li> <li>0.59</li> <li>0.59</li> <li>0.59</li> <li>0.59</li> <li>0.51</li> <li>0.51</li></ol> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -200           0.63           0.22           0.33           0.33           1.33           1.33           0.53           0.53           0.53           0.53           0.53           0.53           0.53           0.53           0.53           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.55           0.55           0.55 | 0.00<br>0.48<br>0.48<br>0.48<br>0.48<br>0.60<br>0.60<br>0.60<br>0.60<br>0.60<br>0.60<br>0.60<br>0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>0.03</li> <li>0.03</li> <li>0.05</li> <li>0.05</li> <li>0.08</li> <li>0.94</li> <li>0.94</li> <li>0.94</li> <li>0.95</li> <li>5.30</li> <li>0.94</li> <li>0.00</li> <li>0.00</li> <li>0.00</li> <li>14.3</li> <li>14.3</li> <li>14.3</li> <li>14.3</li> <li>14.3</li> <li>14.3</li> <li>14.3</li> <li>14.3</li> <li>14.3</li> </ul> | 22.3<br>0.85<br>0.85<br>0.50<br>0.58<br>0.58<br>0.57<br>1.77<br>1.77<br>1.77<br>2.98<br>8.98<br>8.98<br>8.98<br>8.98<br>8.98<br>8.98<br>8.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 第・道路好しん0.460.510.40第・道路好しん0.460.510.40海塩粒子0.250.230.28酸鎖酸0.670.030.300.36酸酸酸酸0.670.690.660.66動車排出ガス3.072.354.15レーキ粉じん0.430.340.54しテ大的質素0.390.300.46動車排出ガス3.072.354.15い一花3.072.354.15い一次合計6.565.607.93レーキがじん0.390.300.46一次合計6.565.607.93レーキがイオン2.192.142.27は酸イオン2.192.142.27近酸イオン0.450.320.36いかイオン1.241.321.32いん(水)等)1.241.32いん(水)等)1.241.32がークAll-般道路ボークAll-般が「ークAll-約が方1.241.34が一ク1.241.34がーク1.241.34ボークAllが一クAllが一クAllが一クAllが一クAll1.241.311.241.311.241.341.241.341.241.341.241.341.241.341.241.241.241.241.241.241.24 <tr< td=""><td>0.77 0.19<br/>0.25 0.25<br/>0.25 0.25<br/>1.11 1.54<br/>1.57 0.36<br/>0.28 0.36<br/>0.28 0.36<br/>0.00 0.86<br/>1.92 2.34<br/>1.33 0.37<br/>1.33 0.37<br/>1.33 0.37<br/>1.24 1.01<br/>1.24 1.01<br/>1.24 1.01<br/>1.24 1.01<br/>1.24 1.01<br/>1.24 1.01</td><td>0.15<br/>0.15<br/>0.37<br/>0.37<br/>0.37<br/>0.37<br/>0.37<br/>0.37<br/>0.59<br/>1.1<br/>3.50<br/>0.54<br/>1.1<br/>3.50<br/>0.54<br/>1.1<br/>3.50<br/>0.54<br/>1.1<br/>3.50<br/>0.54<br/>1.38<br/>1.38<br/>1.38<br/>1.38<br/>1.38<br/>1.38<br/>1.38<br/>1.38</td><td>0.088<br/>0.40<br/>0.41<br/>0.44<br/>0.55<br/>0.24<br/>0.55<br/>0.24<br/>0.55<br/>0.24<br/>0.55<br/>0.24<br/>0.55<br/>0.23<br/>1.55<br/>0.23<br/>1.55<br/>0.23<br/>1.55<br/>0.23<br/>1.55<br/>0.24<br/>0.58<br/>0.28<br/>0.58<br/>0.58<br/>0.58<br/>0.58<br/>0.58<br/>0.58<br/>0.58<br/>0.5</td><td>0.053<br/>0.22<br/>0.30<br/>1.33<br/>0.50<br/>0.50<br/>0.50<br/>0.50<br/>0.50<br/>0.50<br/>1.128<br/>4.75<br/>0.03<br/>8<br/>4.158<br/>0.55<br/>0.55</td><td>0.02<br/>0.02<br/>0.31<br/>0.31<br/>0.60<br/>0.60<br/>0.60<br/>0.60<br/>0.64<br/>0.64<br/>0.64<br/>1.1.0<br/>0.00<br/>0.000<br/>0.000</td><td>0.03<br/>0.03<br/>0.55<br/>0.44<br/>0.45<br/>0.44<br/>0.93<br/>5.30<br/>0.98<br/>0.98<br/>0.98<br/>0.98<br/>0.98<br/>0.98<br/>0.98<br/>0.9</td><td>0.85<br/>0.41<br/>0.28<br/>0.55<br/>0.57<br/>0.27<br/>8.98<br/>8.98<br/>8.98<br/>8.98<br/>8.98<br/>8.98<br/>8.98<br/>8.9</td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.77 0.19<br>0.25 0.25<br>0.25 0.25<br>1.11 1.54<br>1.57 0.36<br>0.28 0.36<br>0.28 0.36<br>0.00 0.86<br>1.92 2.34<br>1.33 0.37<br>1.33 0.37<br>1.33 0.37<br>1.24 1.01<br>1.24 1.01<br>1.24 1.01<br>1.24 1.01<br>1.24 1.01<br>1.24 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.15<br>0.15<br>0.37<br>0.37<br>0.37<br>0.37<br>0.37<br>0.37<br>0.59<br>1.1<br>3.50<br>0.54<br>1.1<br>3.50<br>0.54<br>1.1<br>3.50<br>0.54<br>1.1<br>3.50<br>0.54<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.088<br>0.40<br>0.41<br>0.44<br>0.55<br>0.24<br>0.55<br>0.24<br>0.55<br>0.24<br>0.55<br>0.24<br>0.55<br>0.23<br>1.55<br>0.23<br>1.55<br>0.23<br>1.55<br>0.23<br>1.55<br>0.24<br>0.58<br>0.28<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.053<br>0.22<br>0.30<br>1.33<br>0.50<br>0.50<br>0.50<br>0.50<br>0.50<br>0.50<br>1.128<br>4.75<br>0.03<br>8<br>4.158<br>0.55<br>0.55                                                                                                                                                                                                                                                                                                                                                                 | 0.02<br>0.02<br>0.31<br>0.31<br>0.60<br>0.60<br>0.60<br>0.60<br>0.64<br>0.64<br>0.64<br>1.1.0<br>0.00<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.03<br>0.03<br>0.55<br>0.44<br>0.45<br>0.44<br>0.93<br>5.30<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.9                                                                                                                                                                                                                  | 0.85<br>0.41<br>0.28<br>0.55<br>0.57<br>0.27<br>8.98<br>8.98<br>8.98<br>8.98<br>8.98<br>8.98<br>8.98<br>8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ul> <li>油油村士 0.25 0.23 0.28</li> <li>鉄鋼 (約</li> <li>鉄鋼 0.35</li> <li>(0.32 0.30 0.36</li> <li>(0.33 0.37 2.35 4.15</li> <li>ビーキ粉じん 0.43 0.34 0.54</li> <li>ビーキ粉じん 0.43 0.34 0.54</li> <li>ビーキ粉じん 0.43 0.34 0.54</li> <li>ビーキ粉じん 0.39 0.30 0.46</li> <li>一次合計 6.56 5.60 7.93</li> <li>ビンロC 3.94 4.13 3.68</li> <li>モニウムイオン 2.19 2.14 2.27</li> <li>硝酸イオン 2.19 2.14 2.27</li> <li>福酸イオン 2.19 2.14 2.27</li> <li>配酸イオン 2.13 2.46</li> <li>配酸イオン 4.52 4.50</li> <li>配酸イオン 4.52 4.50</li> <li>の他(水分等) 1.24 1.54 0.33</li> <li>の他(水分等) 1.24 1.54 0.33</li> <li>「一般 道路 春</li> <li>データ All 追加 追加 追加 追加 1.21</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.20 0.38<br>0.25 0.35<br>1.11 1.54<br>1.11 0.50<br>0.28 0.36<br>0.28 0.38<br>0.38 0.38<br>0.38 0.38<br>1.92 2.34<br>1.33 0.37<br>1.92 2.34<br>1.33 0.37<br>1.24 1.01<br>1.24 1.01<br>1.24 1.01<br>1.24 1.01<br>1.24 1.01<br>1.24 1.01<br>1.24 1.01<br>1.24 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.05<br>0.37<br>0.37<br>0.37<br>0.37<br>0.50<br>0.54<br>1.98<br>1.98<br>1.98<br>1.98<br>1.98<br>1.98<br>1.98<br>1.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.40<br>0.40<br>0.44<br>0.44<br>0.55<br>2.49<br>1.55<br>5.86<br>6.86<br>6.86<br>6.86<br>6.86<br>0.24<br>1.55<br>3.33<br>3.32<br>3.33<br>3.33<br>3.33<br>3.33<br>3.33<br>4.06<br>0.85<br>0.40<br>0.28<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.44<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.22<br>0.22<br>0.53<br>0.55<br>0.55<br>0.50<br>0.50<br>0.50<br>0.00<br>1.182<br>4.75<br>0.08<br>4.75<br>0.05<br>0.55<br>0.55                                                                                                                                                                                                                                                                                                                                                                        | 0.31<br>0.31<br>2.03<br>0.37<br>0.30<br>0.37<br>0.33<br>0.37<br>0.37<br>0.37<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.08<br>0.55<br>0.44<br>0.55<br>0.93<br>5.30<br>0.86<br>0.86<br>0.00<br>0.00<br>0.00<br>0.00<br>14.34<br>14.33<br>1.4.33<br>1.4.34<br>2.55<br>2.14<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.5                                                                                                                            | 0.41<br>0.28<br>0.28<br>0.27<br>0.27<br>0.27<br>2.98<br>8.98<br>8.98<br>8.98<br>8.98<br>8.98<br>8.98<br>8.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.25 0.25 0.25 1.54<br>1.11 1.57 1.54<br>0.28 0.36<br>0.28 0.36<br>0.00 0.86<br>0.00 0.86<br>1.92 2.34<br>1.33 0.37<br>1.92 2.34<br>1.33 0.37<br>1.92 2.34<br>1.21 1.21<br>1.24 1.01<br>1.24 1.01<br>1.24 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.41<br>0.37<br>0.37<br>0.37<br>0.59<br>0.59<br>0.50<br>0.50<br>0.50<br>0.54<br>1.98<br>0.54<br>1.98<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>1.38<br>1.38<br>0.55<br>0.54<br>0.56<br>0.56<br>0.56<br>0.56<br>0.56<br>0.56<br>0.56<br>0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.28<br>0.44<br>0.58<br>2.49<br>0.24<br>0.24<br>0.24<br>0.24<br>0.24<br>0.24<br>0.24<br>0.23<br>3.33<br>3.33<br>3.33<br>3.33<br>3.33<br>3.33<br>3.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.30<br>1.33<br>0.53<br>0.53<br>0.55<br>0.00<br>4.00<br>2.13<br>1.82<br>2.13<br>1.82<br>4.75<br>0.08<br>者、道路                                                                                                                                                                                                                                                                                                                                                                                         | 0.31<br>2.03<br>3.74<br>0.60<br>0.60<br>0.67<br>2.33<br>2.33<br>2.33<br>2.33<br>2.33<br>2.33<br>2.33<br>2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.55<br>0.44<br>0.44<br>0.93<br>5.30<br>0.86<br>0.86<br>1.4<br>4.00<br>0.00<br>1.4.3<br>1.4.3<br>1.4.3<br>1.4.3<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.                                                                                                                                                                | 0.28<br>0.50<br>0.55<br>0.55<br>0.57<br>0.27<br>0.28<br>2.98<br>2.98<br>2.98<br>2.98<br>2.98<br>2.98<br>2.98<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 重油蒸焼 0.96 0.88 1.08   重油蒸焼 0.96 0.88 1.08   動車排出ガス 3.07 2.35 4.15   レーキ粉じん 0.43 0.34 0.54   ビック合計 6.56 5.60 7.93   ・アイン 2.19 2.14 2.27   福酸イオン 2.19 2.14 2.27   福酸イオン 2.19 2.14 2.27   信物電気 1.32 1.32 1.33   アイルのパターン 1.24 1.54 0.87   アイルのパターン 1.24 1.54 0.87   「オータ All 追加 追加 追加 追加 追加 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.11         1.54           0.47         0.50           1.57         1.89           0.228         0.36           0.00         0.86           0.00         0.86           0.00         0.86           0.00         0.86           0.00         0.86           1.92         2.34           1.92         2.34           1.92         2.34           1.33         0.37           1.33         0.37           1.33         0.37           1.33         0.37           1.33         0.37           1.33         0.37           1.2.1         1.2.1           1.2.1         1.2.1           1.2.4         1.01           1.2.4         1.01           1.2.4         1.01           1.2.4         1.01           1.2.4         1.01           1.2.4         1.01                                                                                     | 0.37<br>0.91<br>0.59<br>0.59<br>0.59<br>5.15<br>5.15<br>5.15<br>5.15<br>5.15<br>5.15<br>5.15<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.44<br>0.58<br>2.59<br>0.24<br>0.24<br>0.24<br>0.24<br>0.24<br>0.24<br>0.24<br>0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.33<br>0.53<br>0.53<br>0.56<br>0.50<br>0.00<br>6.67<br>4.00<br>2.13<br>1.82<br>4.75<br>1.82<br>4.75<br>0.08<br>0.08<br>0.08<br>0.05<br>0.05                                                                                                                                                                                                                                                                                                                                                         | 2.03<br>3.74<br>0.50<br>0.57<br>0.57<br>0.57<br>1.20<br>0.57<br>2.33<br>2.33<br>2.33<br>2.33<br>2.33<br>2.33<br>2.33<br>2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.44<br>0.93<br>5.30<br>0.86<br>0.86<br>0.00<br>8.19<br>8.19<br>4.00<br>0.69<br>14.3<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.                                                                                                                                                                                           | 0.50<br>0.58<br>0.58<br>0.27<br>0.27<br>0.27<br>0.27<br>0.21<br>13.7<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 発棄物焼却         0.67         0.69         0.66           動車排出方ス         3.07         2.35         4.15           レーキ労じん         0.43         0.34         0.54           レーキ労じたん         0.33         0.30         0.46           地質燃焼類         0.33         0.33         0.34           レーキ労じん         0.34         0.54         0.56           小のC         3.94         4.13         3.68           センムイオン         2.19         2.14         2.27           耐酸イオソン         2.19         2.14         2.27           耐酸イオソン         2.19         2.14         2.27           副酸イオソン         2.19         2.14         2.26           動化物イオン         2.13         2.46           動化ポイオン         0.28         0.26         0.32           こから計         13.2         1.32         13.3           つル(水分等)         1.24         1.54         0.87           一大ののパターン         1.124         1.54         0.87           データ         All         一般         道路         春           データ         1.124         1.54         0.87         1.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.47 0.50<br>1.57 1.89<br>0.028 0.36<br>0.028 0.36<br>0.08 0.36<br>1.92 2.34<br>1.33 0.37<br>1.24 1.01<br>1.24 1.01<br>1.24 1.01<br>1.24 1.01<br>1.24 1.01<br>1.24 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.91<br>3.26<br>3.26<br>0.059<br>0.059<br>5.15<br>5.15<br>5.15<br>5.15<br>5.15<br>5.15<br>5.15<br>5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.58<br>2.49<br>0.24<br>1.55<br>6.86<br>6.86<br>6.86<br>6.86<br>6.86<br>6.86<br>6.86<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.53<br>3.16<br>0.50<br>0.00<br>6.67<br>4.00<br>2.13<br>1.82<br>4.75<br>4.75<br>0.08<br>卷、道路                                                                                                                                                                                                                                                                                                                                                                                                         | 0.36<br>3.74<br>1.20<br>8.74<br>8.74<br>8.74<br>6.64<br>0.00<br>0.000<br>11.9<br>8.68<br>8.64<br>11.9<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.93<br>5.30<br>0.086<br>0.086<br>8.19<br>8.19<br>4.84<br>4.00<br>2.14<br>2.14<br>2.14<br>2.14<br>2.85<br>2.85<br>2.85<br>2.85<br>2.85                                                                                                                                                                                                       | 0.58<br>4.31<br>0.27<br>0.27<br>2.47<br>3.66<br>4.10<br>0.50<br>0.50<br>0.50<br>0.51<br>13.7<br>13.7<br>13.7<br>13.7<br>13.7<br>13.7<br>13.7<br>13.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 助車排出ガス         3.07         2.35         4.15           レーキ粉じん         0.43         0.34         0.54           (物質燃焼類         0.39         0.34         0.54           一次合計         6.56         5.60         7.93           -次合計         6.56         5.60         7.93           -次合計         6.56         5.60         7.93           v-OC         3.94         4.13         3.68           ボ酸イオン         2.19         2.14         2.27           直酸イオン         2.19         2.13         2.46           航酸イオン         2.13         2.13         2.46           前酸イオン         2.13         2.13         2.46           前酸イオン         0.25         4.50         4.6           こから計         13.2         13.2         13.3           クロ(水分等)         1.24         1.54         0.87           ガーク         1.24         1.54         0.87           ディータ         All         一般         道路         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.57         1.89           0.28         0.36           0.000         0.86           0.000         0.86           4.66         5.97           4.22         3.27           1.92         2.34           1.93         0.37           1.33         0.37           1.33         0.37           1.33         0.37           1.27         1.27           12.1         1.21           12.4         1.01           1.24         1.01           1.24         1.01           1.24         1.01           1.24         1.01           1.24         1.01           1.24         1.01                                                                                                                                                                                                                                                                      | 3.26<br>0.59<br>0.50<br>0.57<br>5.15<br>5.15<br>5.15<br>5.15<br>5.15<br>5.15<br>0.54<br>0.54<br>1.38<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.49<br>0.24<br>1.55<br>6.86<br>6.86<br>6.86<br>6.86<br>6.86<br>6.86<br>6.86<br>7.33<br>3.33<br>3.33<br>3.33<br>3.33<br>3.33<br>3.33<br>3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.16<br>0.50<br>0.00<br>6.67<br>4.00<br>2.13<br>1.82<br>4.75<br>0.08<br>**,道路                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.74<br>0.60<br>1.20<br>8.74<br>2.39<br>2.33<br>2.33<br>2.33<br>0.47<br>6.64<br>0.02<br>0000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.30<br>0.86<br>0.86<br>8.19<br>8.19<br>8.19<br>2.14<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>4.00<br>2.55<br>0.65<br>14.3<br>14.3<br>2.85<br>2.85<br>2.85<br>2.85<br>2.85<br>2.55<br>2.55<br>2.55                                                                                                                                         | <ul> <li>4.31</li> <li>0.27</li> <li>0.27</li> <li>0.177</li> <li>1.177</li> <li>1.177</li> <li>8.98</li> <li>8.98</li> <li>8.98</li> <li>2.98</li> <li>2</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| レーキ粉じん         0.43         0.34         0.54         0.54           「物質燃焼類         0.39         0.30         0.46         0.46           一次合計         6.56         5.60         7.93         0.46           一次合計         6.56         5.60         7.93         0.46           -少公白         3.94         4.13         3.68         4.13         3.68           v-OC         3.94         4.13         3.68         4.14         2.27           市酸イオン         2.19         2.14         2.27         4.66           航酸イオン         4.13         3.68         4.6           近代物イオン         2.22         4.50         4.66           5         4.50         2.13         2.46           6.56         1.32         1.32         1.33           5         1.32         1.32         1.33           5         1.32         1.32         1.33           5         1.24         1.54         0.33           1.27         1.32         1.32         1.33           5         1.24         1.54         0.33           5         1.24         1.54         0.33           7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.28 0.36<br>0.00 0.86<br>4.66 5.97<br>4.22 3.27<br>1.92 2.34<br>1.33 0.37<br>1.23 0.02<br>4.57 6.72<br>0.06 0.02<br>1.21 1.21<br>1.24 1.01<br>1.24 1.01<br>1.24 1.01<br>1.24 1.01<br>1.24 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.59<br>0.000<br>0.000<br>0.198<br>1.98<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.24<br>1.1.55<br>6.86<br>6.86<br>6.86<br>6.86<br>3.33<br>3.25<br>3.33<br>3.33<br>3.33<br>3.33<br>3.33<br>3.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.50<br>0.00<br>6.67<br>4.00<br>1.82<br>4.75<br>0.08<br>0.08<br>0.08<br>0.05<br>6.65                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.60<br>1.20<br>8.74<br>2.33<br>2.33<br>6.64<br>6.64<br>6.64<br>11.9<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.86<br>0.000<br>8.19<br>4.84<br>4.84<br>4.00<br>2.14<br>4.00<br>2.59<br>0.69<br>1.4.3<br>2.85<br>单位                                                                                                                                                                                                                                         | 0.27<br>1.177<br>1.177<br>8.98<br>8.98<br>2.98<br>2.47<br>3.66<br>4.10<br>0.50<br>0.50<br>0.50<br>0.21<br>0.21<br>1.37<br>1.37<br>1.37<br>1.37<br>1.37<br>1.37<br>1.37<br>1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (物質燃焼類         0.39         0.30         0.46           一次合計         6.56         5.60         7.93           v-OC         3.94         4.13         3.68           v-OC         3.94         4.13         3.68           モニウムイオン         2.19         2.14         2.27           高酸イオン         2.29         4.50         4.56           高酸イオン         2.13         2.46           高酸イオン         4.52         4.50         4.55           記がめイオン         13.21         13.3         13.3           こ次合計         13.2         13.2         13.3           ひ他(水分等)         1.24         1.54         0.87           かし(水分等)         1.24         1.54         0.87           データ         All         一般         道路         春                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000 0.86<br>4.66 5.97<br>4.22 3.27<br>1.92 2.34<br>1.33 0.37<br>1.33 0.37<br>1.24 1.01<br>1.24 1.01<br>1.24 1.01<br>1.24 1.01<br>1.24 1.01<br>1.24 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>0.000</li> <li>5.75</li> <li>5.15</li> <li>5.15</li> <li>1.98</li> <li>1.98</li> <li>3.50</li> <li>2.65</li> <li>1.98</li> <li>2.63</li> <li>2.64</li> <li>2.65</li> <li>2.65</li> <li>2.65</li> <li>2.65</li> <li>2.65</li> <li>2.65</li> <li>2.65</li> <li>2.65</li> <li>3.50</li> <li>2.65</li> <li>2.65</li></ul>    | 1.1.55<br>6.86<br>6.86<br>6.86<br>2.34<br>3.33<br>3.33<br>4.06<br>0.41<br>13.4<br>13.4<br>0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00<br>6.67<br>4.00<br>2.13<br>1.82<br>4.75<br>0.08<br>0.08<br>0.08                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.20<br>8.74<br>8.74<br>2.33<br>0.47<br>6.64<br>0.02<br>0.02<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.000<br>8.19<br>8.19<br>4.84<br>4.00<br>2.59<br>0.69<br><u>14.3</u><br>2.85<br>单位                                                                                                                                                                                                                                                           | 1.177<br>8.98<br>2.98<br>2.98<br>2.94<br>4.10<br>4.10<br>0.50<br>0.50<br>0.21<br>13.7<br>13.7<br>13.7<br>13.7<br>13.7<br>13.7<br>13.7<br>13.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 一次合計         6.56         5.60         7.93           v-OC         3.94         4.13         3.68           モニウムイオン         2.19         2.14         2.27           龍酸イオン         2.19         2.14         2.27           航酸イオン         4.52         4.56         4.66           記念合計         13.2         4.56         4.56           記水付オイン         4.52         4.50         4.56           記水付オイン         10.21         10.21         0.33           二次合計         13.2         13.2         13.3           一次合計         12.4         1.54         0.87           九しのパターン         1.24         1.54         0.87           データ         All         一般         道路         春           データ         追加         追加         追加         道路                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.66 5.97<br>4.22 3.27<br>1.92 2.34<br>1.33 0.37<br>4.57 6.72<br>4.57 6.72<br>0.06 0.02<br>1.21 1.21<br>1.24 1.01<br>1.24 1.01<br>1.24 1.01<br>1.24 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.75<br>5.15<br>1.98<br>3.50<br>3.50<br>2.65<br>2.65<br>2.65<br>1.38<br>1.38<br>1.38<br>1.38<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.86<br>3.25<br>3.34<br>2.34<br>3.33<br>3.33<br>3.33<br>3.33<br>3.33<br>4.06<br>0.41<br>13.4<br>13.4<br>0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.67<br>4.00<br>2.13<br>1.82<br>4.75<br>0.08<br>0.55<br>0.55                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.74<br>2.33<br>2.33<br>2.33<br>2.33<br>0.47<br>6.64<br>11.9<br>11.9<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.19<br>8.19<br>2.14<br>2.14<br>2.14<br>2.14<br>2.59<br>0.69<br>14.3<br>2.85<br>单位                                                                                                                                                                                                                                                           | 8.98<br>2.97<br>2.97<br>3.66<br>4.10<br>0.50<br>0.50<br>0.21<br>13.7<br>13.7<br>13.7<br>13.7<br>13.7<br>13.7<br>13.7<br>13.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| v-OC         3.94         4.13         3.68           モーウムイオン         2.19         2.14         2.27           諸酸イオン         2.27         2.13         2.46           硫酸イオン         4.52         4.50         4.56           近わ物イオン         0.28         0.26         0.32           三次合計         13.2         13.3         13.3           2.水合計         1.24         1.54         0.87           ク他(水分等)         1.24         1.54         0.87           ガーク         All         一般         道路         春、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.22 3.27<br>1.92 2.34<br>1.33 0.37<br>4.57 6.72<br>0.06 0.02<br>0.06 0.02<br>1.21 1.21<br>1.24 1.01<br>1.24 1.01<br>1.24 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.15<br>5.15<br>3.50<br>3.50<br>2.65<br>2.65<br>2.65<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.25<br>2.34<br>3.33<br>4.06<br>0.41<br>0.41<br>0.85<br>0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.00<br>2.13<br>1.82<br>4.75<br>0.08<br><u>12.8</u><br>0.55                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.39<br>2.33<br>0.47<br>6.64<br>0.02<br>11.9<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.84<br>2.14<br>4.00<br>2.59<br>0.69<br>14.3<br>2.85<br>单位                                                                                                                                                                                                                                                                                   | 2.98<br>2.47<br>3.66<br>4.10<br>0.50<br>0.50<br>0.51<br>0.21<br>0.21<br>二<br>此 <sup>m</sup> "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| モーウムイオン 2.19 2.14 2.27<br>諸酸イオン 2.27 2.13 2.46<br>硫酸イオン 4.52 4.50 4.56<br>能化物イオン 0.28 0.26 0.32<br>二次合計 1.3.2 13.3 13.3<br>ひ他(水分等) 1.24 1.54 0.87<br>アイルのパターン 1.24 1.54 0.87<br>データ All 一般 道路 春、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.92 2.34<br>1.33 0.37<br>4.57 6.72<br>0.06 0.02<br>12.1 12.7<br>1.24 1.01<br>1.24 1.01<br>1.24 20<br>1.21<br>1.24 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.350<br>3.50<br>3.50<br>2.65<br>2.65<br>1.38<br>1.38<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.34<br>3.33<br>4.06<br>0.41<br>13.4<br>0.85<br>0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.13<br>2.13<br>4.75<br>0.08<br>0.08<br>0.55<br>0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.33<br>0.47<br>6.64<br>0.02<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.14<br>4.00<br>2.59<br>0.69<br><u>14.3</u><br><u>14.3</u><br>单位<br>单位                                                                                                                                                                                                                                                                       | 2.47<br>3.66<br>4.10<br>0.50<br>0.50<br>0.51<br>0.21<br>13.7<br>0.21<br>第一<br>第一<br>第一<br>第一                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| i諸酸・オン 2.27 2.13 2.46<br>硫酸・オン 4.52 4.50 4.56<br>低物・イオン 0.28 0.26 0.32<br>三次合計 13.2 13.3 13.3<br>ひ他(水分等) 1.24 1.54 0.87<br>データ All 一般 道路 春、<br>物質燃焼類 追加 追加 追加 通加 通                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.33 0.37<br>4.57 6.72<br>0.06 0.02<br>12.1 12.7<br>1.24 1.01<br>1.24 1.01<br>一般夏、一能                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.50<br>2.65<br>2.65<br>2.65<br>2.65<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.33<br>4.06<br>0.41<br>13.4<br>0.85<br>0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.82<br>4.75<br>0.08<br>12.8<br>0.55<br>0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.47<br>6.64<br>0.02<br>11.9<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.00<br>2.59<br>0.69<br>14.3<br>半位<br>単位                                                                                                                                                                                                                                                                                                     | 3.66<br>4.10<br>0.50<br>0.50<br>0.50<br>0.21<br>13.7<br>2、道路<br>道路                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 硫酸イオン 4.52 4.50 4.56<br>硫酸イオン 4.52 4.50 4.56<br>化物イオン 0.28 0.26 0.32<br>二次合計 13.2 13.3 13.3<br>ひ他(水分等) 1.24 1.54 0.87<br>アイルのバターン 1.24 1.54 0.87<br>データ All 一般 道路 春、<br>物質燃焼類 追加 追加 追加 通加 通                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.65<br>2.65<br>0.54<br>1.38<br>2.63<br>1.38<br>1.38<br>1.38<br>2.63<br>2.63<br>3.670<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.06<br>0.41<br>13.4<br>0.85<br>0.85<br>0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.75<br>0.08<br>0.55<br>0.55<br>者、道路                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.64<br>6.64<br>0.02<br>111.9<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.59<br>2.59<br>0.69<br>14.3<br>2.85<br>単位<br>秋、道路、                                                                                                                                                                                                                                                                                          | 4.10<br>0.50<br>0.50<br>0.51<br>13.7<br>0.21<br>8.本<br>道路<br>道治                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (北物イオン 0.28 0.26 0.32<br>三次合計 13.2 13.3 13.2 13.3<br>2.4(木分等) 1.24 1.54 0.87<br>アイルのバターン All 一般 道路 春、<br>データ All 一般 道路 春、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.06 0.02<br>12.1 12.7<br>1.24 1.01<br>一般夏、一般<br>当加 追加                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.63<br>13.8<br>13.8<br>1<br>2.63<br>1<br>1<br>2.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.41<br>13.4<br>0.85<br>0.85<br>0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.08<br>12.8<br>0.55<br>春、道路                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.02<br>11.9<br>0.00<br>遺路                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.69<br>14.3<br>2.85<br>単位<br>秋、道路、                                                                                                                                                                                                                                                                                                          | 0.50<br>0.51<br>0.21<br>0.21<br>8、道路<br>追加                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 二次合計     13.2     13.2     13.3       D他(水分等)     1.24     1.54     0.87       アイリレのパターン     1.24     1.54     0.87       データ     All     一般     道路     春、       物質燃焼類     追加     追加     追加     通                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.1 12.7<br>1.24 1.01<br>1.24 1.01<br>一般夏、一般<br>首加<br>追加                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.8<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13.4<br>0.85<br>一般                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12.8<br>0.55<br>春、道路                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>111.9</u><br>0.00<br>夏、道路                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14.3<br>2.85<br>単位<br>秋、道路、                                                                                                                                                                                                                                                                                                                  | 13.7<br>13.7<br>0.21<br>0.21<br>○<br>21<br>第一<br>第一<br>第一<br>第一                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Dhtu(水分等) 1.24 1.54 0.87<br>アイリレのパターン All 一般 道路 春、<br>物質燃焼類 追加 追加 追加 通加 通                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.24 1.01<br>一般 夏、一般<br>追加                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.63<br>2.63<br>2.63<br>2.63<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 冬、一般                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.55<br>春、道路                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 。<br>(1000<br>(1000<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(                                                                                                                                             | 2.85<br>単位<br>秋、道路 <i>x</i>                                                                                                                                                                                                                                                                                                                  | 0.21<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <i>ディ1Lのパターン</i><br>データ All 一般 道路 春、<br>物質燃焼類 追加 追加 追加 道加 道                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ——般夏、一般<br>当加  追加                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 4、一般 3<br>追加                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 冬、<br>一<br>般                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 春、道路                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a、<br>道、<br>開、<br>開、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 秋、道路<br>"道路"、                                                                                                                                                                                                                                                                                                                                | <ul> <li>μg/m<sup>3</sup></li> <li>μg/m<sup>3</sup></li> <li>加</li> <li>加</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <i>ァイルのパターン</i><br>データ All 一般 道路 春、<br>[物質燃焼類 追加 追加 追加 道加 道                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ——般夏、——般<br>自加  追加                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1<br>8秋、一般;<br>追加                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 冬、一般                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 春、道路                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 夏、道路                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 秋、道路 。                                                                                                                                                                                                                                                                                                                                       | 》<br>》<br>》<br>》<br>。<br>》<br>》<br>。<br>》<br>》<br>。<br>》<br>》<br>。<br>》<br>》<br>。<br>》<br>》<br>。<br>》<br>》<br>。<br>》<br>。<br>》<br>。<br>》<br>。<br>》<br>。<br>》<br>。<br>》                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <i>データ</i> All 一般 道路 春、<br>物質燃焼類 追加 追加 追加 〕加                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 一般夏、一般<br>自加  追加                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ⊵秋、一般 ⇒<br>追加                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 冬、一般                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 春、道路;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 夏、道路                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 秋、道路 3                                                                                                                                                                                                                                                                                                                                       | 冬、道路<br>追加                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 物質燃焼類 追加 追加 追加 追                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 自加 追加                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 追加                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | į                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                              | 追加                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| t<br>・<br>道<br>路<br>粉<br>じ<br>ん                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 追加                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 追加                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 追加                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 追加                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>陶棄物焼却</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 質量濃度 21.0 20.3 22.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18.0 19.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25.3                                                                                                                                                                                                                                                                                                                                         | 22.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| €・道路粉じん 2.2 2.5 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.3 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1                                                                                                                                                                                                                                                                                                                                          | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 海塩粒子 1.2 1.1 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.1 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.3                                                                                                                                                                                                                                                                                                                                          | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 鉄鋼 1.5 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.4 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.2                                                                                                                                                                                                                                                                                                                                          | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 重油燃焼 4.6 4.3 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.2 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.7                                                                                                                                                                                                                                                                                                                                          | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 廃棄物焼却 3.2 3.4 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.6 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.7                                                                                                                                                                                                                                                                                                                                          | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 助車排出ガス 14.6 11.6 18.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.7 9.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21.0                                                                                                                                                                                                                                                                                                                                         | 18.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| レーキ教じん 2.0 1.7 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.6 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.4                                                                                                                                                                                                                                                                                                                                          | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 物質燃焼類 1.9 1.5 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0                                                                                                                                                                                                                                                                                                                                          | 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 一次合計 31.2 27.6 35.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25.9 30.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 32.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 42.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 32.4                                                                                                                                                                                                                                                                                                                                         | 39.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| v-OC 18.8 20.4 16.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23.5 16.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19.1                                                                                                                                                                                                                                                                                                                                         | 13.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| モニウムイオン 10.4 10.5 10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.7 11.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.5                                                                                                                                                                                                                                                                                                                                          | 10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.4 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15.8                                                                                                                                                                                                                                                                                                                                         | 16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 流酸イオン 21.5 22.2 20.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25.4 34.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.2                                                                                                                                                                                                                                                                                                                                         | 17.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 「 一 一 1.3 1.4 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.3 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.7                                                                                                                                                                                                                                                                                                                                          | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 二次合計 62.9 64.8 60.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 67.2 64.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 62.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 63.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 63.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 57.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 56.4                                                                                                                                                                                                                                                                                                                                         | 59.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| D 他(水分等) 5.9 7.6 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.9 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.3                                                                                                                                                                                                                                                                                                                                         | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 東谷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %(悟量                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 一番日のよ                                                                                                                                                                                                                                                                                                                                        | 11 a/m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

— 361 —

|             | CMB法による計昇結果(買重源度) | 55.00                       |      |          |      |      |                  |       |         |                                           |                            |      |      |           |       |       |             |      | 、 … 卷 。 令 · 卒 · 卜 · | 4 4 8         |             |                                                | CMB法による計算結果(寄与割合)<br>000 「 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ |      |          |      |     |      |     |         |         |             |      |           |       |       |        |      |          | 、                      |                              |                                            |
|-------------|-------------------|-----------------------------|------|----------|------|------|------------------|-------|---------|-------------------------------------------|----------------------------|------|------|-----------|-------|-------|-------------|------|---------------------|---------------|-------------|------------------------------------------------|--------------------------------------------------------------|------|----------|------|-----|------|-----|---------|---------|-------------|------|-----------|-------|-------|--------|------|----------|------------------------|------------------------------|--------------------------------------------|
|             |                   |                             |      |          |      | (    | ε <sup>ω</sup> , | /3 n  | ()≩     | []<br>二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二 | [<br>[<br>[<br>[<br>[<br>] | Ĭ    |      |           |       |       |             |      |                     |               |             |                                                |                                                              |      |          |      |     |      | (%  | 5)Ę     | 学に:     | <b>三</b> 合  |      |           |       |       |        |      |          |                        |                              |                                            |
| 1           | 冬、多摩              | 追加                          | 20.5 | 0.68     | 0.44 | 0.13 | 0.29             | 0.28  | 2.33    | 0.16                                      | 2.57                       | 6.90 | 2.74 | 2.26      | 3.21  | 4.02  | 0.28        | 12.5 | 1.10                | $: \mu g/m^3$ |             | 冬、多摩                                           | 追加                                                           | 20.5 | 3.3      | 2.2  | 0.6 | 1.4  | 1.3 | 11.4    | 0.8     | 33.6        | 13.4 | 11.0      | 15.7  | 19.6  | 1.4    | 61.0 | 5.4      | $\mu  \mathrm{g/m^3})$ |                              |                                            |
| 1<br>4<br>4 | 钬、多摩;             | 追加                          | 21.3 | 0.19     | 0.04 | 0:30 | 0.29             | 0.88  | 3.11    | 0.50                                      | 0:00                       | 5.31 | 5.20 | 1.83      | 3.23  | 2.56  | 0.44        | 13.3 | 2.73                | 単位            |             | 钬、多摩 🗧                                         | 追加                                                           | 21.3 | 0.9      | 0.2  | 1.4 | 1.4  | 4.1 | 14.6    | 2.4     | 25.0        | 24.4 | 8.6       | 15.2  | 12.0  | 2.0    | 62.3 | 12.8     | 濃度のみ                   | ,                            | °()                                        |
| 4<br>4<br>1 | 夏、多摩 ≹            | 追加                          | 20.7 | 0.19     | 0.29 | 0.22 | 1.06             | 0.57  | 1.99    | 0.41                                      | 0.87                       | 5.61 | 3.66 | 2.36      | 0.35  | 6.70  | 0.01        | 13.1 | 2.02                |               |             | 夏、多摩 毛                                         | 追加                                                           | 20.7 | 0.9      | 1.4  | 1.1 | 5.1  | 2.8 | 9.6     | 2.0     | 97.1        | 17.7 | 11.4      | 1.7   | 32.4  | 0.1    | 63.2 | 9.7      | :%(質量)                 | を追加)。                        | (0)み(使用                                    |
| 1<br>1<br>1 | <b>手、多摩</b> §     | 追加                          | 17.4 | 0.77     | 0.17 | 0.19 | 0.71             | 0.45  | 1.57    | 0.23                                      | 00.00                      | 4.09 | 4.37 | 1.83      | 1.07  | 4.36  | 0.04        | 11.7 | 1.64                |               |             | <b>季、多摩</b> 夏                                  | 追加                                                           | 17.4 | 4.4      | 1.0  | 1.1 | 4.1  | 2.6 | 0.0     | 1.3     | 0.U<br>03.5 | 25.1 | 10.5      | 6.1   | 25.1  | 0.2    | 67.1 | 9.4      | 単位                     | (野焼き)                        | 竟のナーマ                                      |
|             | ×<br>×<br>×       | 追加                          | 21.8 | 0.95     | 0.38 | 0.37 | 0.61             | 0.83  | 2.59    | 0.38                                      | 0.76                       | 6.87 | 3.67 | 2.43      | 3.44  | 4.11  | 0.54        | 14.2 | 0.74                |               |             | 冬、区 ${}^{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{$ | 追加                                                           | 21.8 | 4.4      | 1.7  | 1.7 | 2.8  | 3.8 | 11.9    | 1.7     | 315         | 16.8 | 11.1      | 15.8  | 18.9  | 2.5    | 65.1 | 3.4      |                        | 質燃焼類                         | :(一般境1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| -  ;        | 秋、区               | 追加                          | 23.0 | 0.13     | 0.05 | 0.53 | 0.49             | 0.94  | 3.43    | 0.64                                      | 00.00                      | 6.21 | 5.09 | 2.12      | 3.77  | 2.74  | 0.65        | 14.4 | 2.43                |               | 1           | 秋、区                                            | 追加                                                           | 23.0 | 0.5      | 0.2  | 2.3 | 2.1  | 4.1 | 14.9    | 5.8     | 0.0         | 22.1 | 9.2       | 16.4  | 11.9  | 2.8    | 62.4 | 10.6     |                        | ULIC<br>植物<br>LTE<br>に<br>植物 | しを聞くたませた。                                  |
|             | 夏、区               | 追加                          | 18.8 | 0.19     | 0.47 | 0.27 | 2.17             | 0.43  | 1.72    | 0.30                                      | 0.84                       | 6.39 | 2.91 | 2.31      | 0.39  | 6.74  | 0.02        | 12.4 | 0.03                |               |             | 夏、区                                            | 追加                                                           | 18.8 | 1.0      | 2.5  | 1.5 | 11.5 | 2.3 | 9.1     | 1.6     | 34.0        | 15.5 | 12.3      | 2.1   | 35.9  | 0.1    | 65.8 | 0.2      |                        | : プロファ4                      | □ 季節炎 ≣                                    |
|             | 春、区               | 追加                          | 18.7 | 0.74     | 0.24 | 0.33 | 1.54             | 0.49  | 1.55    | 0.33                                      | 0.00                       | 5.21 | 4.10 | 2.01      | 1.59  | 4.79  | 0.08        | 12.6 | 0.92                |               |             | 春、区                                            | 追加                                                           | 18.7 | 4.0      | 1.3  | 1.8 | 8.2  | 2.6 | 8.3     | 1.7     | 0.0         | 21.9 | 10.7      | 8.5   | 25.6  | 0.4    | 67.2 | 4.9      |                        | Iした(既有)                      | 、それた。                                      |
| 1           | 多摩                | 追加                          | 20.0 | 0.51     | 0.21 | 0.22 | 0.59             | 0.63  | 2.31    | 0.27                                      | 0.49                       | 5.23 | 4.18 | 2.07      | 1.96  | 4.41  | 0.19        | 12.8 | 1.95                |               |             | 多摩                                             | 追加                                                           | 20.0 | 2.5      | 1.1  | 1.1 | 2.9  | 3.2 | 11.6    | 1.3     | 26.2        | 20.9 | 10.4      | 9.8   | 22.1  | 1.0    | 64.1 | 9.8      |                        | い」を採用                        | 部に分類し                                      |
|             | ×                 | 追加                          | 20.6 | 0.50     | 0.25 | 0.37 | 1.24             | 0.74  | 2.33    | 0.40                                      | 0.15                       | 5.98 | 4.08 | 2.22      | 2.30  | 4.59  | 0.32        | 13.5 | 1.10                |               |             | M                                              | 追加                                                           | 20.6 | 2.4      | 1.2  | 1.8 | 0.9  | 3.6 | 11.3    | 1.9     | 29.0        | 19.8 | 10.8      | 11.2  | 22.3  | 1.6    | 65.6 | 5.4      |                        | レはパター                        | 部と多摩追                                      |
| 4           | 一般                | 追加                          | 20.3 | 0.51     | 0.23 | 0.30 | 0.88             | 0.69  | 2.35    | 0.34                                      | 0:30                       | 5.60 | 4.13 | 2.14      | 2.13  | 4.50  | 0.26        | 13.2 | 1.54                |               |             | 一般                                             | 追加                                                           | 20.3 | 2.5      | 1.1  | 1.5 | 4.3  | 3.4 | 11.6    | 1.7     | 07.6<br>8   | 20.4 | 10.5      | 10.5  | 22.2  | 1.3    | 64.8 | 7.6      |                        | パロファイル                       | ニータを区                                      |
| プロファイルのパターン | データ               | 植物質燃焼類<br>土壌・道路粉じん<br>廃棄物焼却 | 質量濃度 | 土壌・道路粉じん | 海埴粒子 | 鉄鋼   | 重油燃焼             | 廃棄物焼却 | 自動車排出ガス | ブレーキ粉じん                                   | 植物質燃焼類                     | 一次合計 | ~-OC | アンモニウムイオン | 硝酸イオン | 硫酸イオン | 植 代 教 イ オ ソ | 二次合計 | その他(水分等)            |               | プロファイルのパターン | データ                                            | 植物質燃焼類<br>土壌・道路粉じん<br>廃棄物焼却                                  | 質量濃度 | 土壌・道路粉じん | 海塩粒子 | 鉄鋼  | 重油燃焼 | 廃   | 自動車排出ガス | ブレーキ教じん | 他彻具添洗损一一次合計 | ~-OC | アンモニウムイオン | 硝酸イオン | 硫酸イオン | 植代物人オン | 二次合計 | その他(水分等) |                        | 171                          |                                            |

● その街(米公等)
 ● 信に物くオン
 □ 硫酸、オン
 □ 硫酸、オン
 ■ アンホニウム・オン
 ■ アンホニウム・オン
 ■ アンホニウム・オン
 ■ マンホニウム・オン
 ■ マンホニウム・オン
 ■ マンホェウム・オン
 ■ マンホェウム・オン
 ■ マンホェウム・オン
 ■ マンホック
 ■ 市物にん
 □ 二 地域、
 □ 二 壊・
 □ 二 壊・
 □ 二 壊・
 □ 二 臨 水

▲の商((火公等)
 「「「「」」」」
 「「」」」」
 「」」」
 「」」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」</



4-3-3 各発生源の指標元素濃度

各発生源の指標元素について、それぞれの区分における平均濃度を示す。区部と多摩部を分類 したものについては、一般環境のデータのみを使用した。

各発生源の指標元素は、

- ・土壌・道路粉じん:Al
- ・海塩粒子:Na
- ・鉄鋼:Mn、(Cr)
- ・重油燃焼:V
- ・廃棄物焼却:K、(Cr)
- ・自動車排出ガス:EC
- ・ブレーキ粉じん:Sb
- •植物質燃焼類:K

である。





4-3-4 地点間における寄与濃度のばらつき

10 地点(一般環境9地点+下連雀)における各発生源の寄与濃度(CMB法による計算結果)のばらつきを調べた。

土壌・道路粉じん

|        | All  | 春    | 夏    | 秋    | 冬    |
|--------|------|------|------|------|------|
| 晴海     | 0.55 | 0.77 | 0.34 | 0.20 | 0.92 |
| 白金     | 0.49 | 0.66 | 0.14 | 0.14 | 1.00 |
| 練馬     | 0.50 | 0.81 | 0.07 | 0.22 | 0.69 |
| 綾瀬     | 0.39 | 0.64 | 0.12 | 0.00 | 0.91 |
| 鹿骨     | 0.54 | 0.74 | 0.21 | 0.23 | 1.06 |
| 東青梅    | 0.51 | 0.92 | 0.19 | 0.22 | 0.61 |
| 町田     | 0.49 | 0.87 | 0.06 | 0.15 | 0.68 |
| 小金井    | 0.50 | 0.71 | 0.25 | 0.15 | 0.71 |
| 愛宕     | 0.49 | 0.65 | 0.10 | 0.28 | 0.69 |
| 下連雀    | 0.51 | 0.71 | 0.26 | 0.18 | 0.75 |
| 平均     | 0.50 | 0.75 | 0.17 | 0.18 | 0.80 |
| 標準偏差   | 0.04 | 0.09 | 0.09 | 0.07 | 0.15 |
| 相対標準偏差 | 7.9  | 11.8 | 49.4 | 41.4 | 18.3 |

|        | All  | 春    | 夏    | 秋    | 冬    |
|--------|------|------|------|------|------|
| 晴海     | 0.33 | 0.24 | 0.53 | 0.14 | 0.45 |
| 白金     | 0.33 | 0.26 | 0.54 | 0.12 | 0.49 |
| 練馬     | 0.16 | 0.14 | 0.30 | 0.00 | 0.33 |
| 綾瀬     | 0.21 | 0.26 | 0.48 | 0.01 | 0.25 |
| 鹿骨     | 0.25 | 0.29 | 0.41 | 0.00 | 0.38 |
| 東青梅    | 0.19 | 0.10 | 0.20 | 0.05 | 0.38 |
| 町田     | 0.28 | 0.23 | 0.42 | 0.07 | 0.53 |
| 小金井    | 0.25 | 0.21 | 0.35 | 0.08 | 0.42 |
| 愛宕     | 0.16 | 0.13 | 0.23 | 0.02 | 0.46 |
| 下連雀    | 0.20 | 0.17 | 0.30 | 0.01 | 0.42 |
| 平均     | 0.24 | 0.20 | 0.38 | 0.05 | 0.41 |
| 標準偏差   | 0.06 | 0.06 | 0.11 | 0.05 | 0.08 |
| 相対標準偏差 | 25.4 | 30.0 | 29.9 | 94.0 | 18.9 |

単位: µg/m<sup>3</sup>(相対標準偏差のみ%)

単位: µg/m<sup>3</sup>(相対標準偏差のみ%)

鉄鋼

|        | All  | 春    | 夏    | 秋    | 冬    |
|--------|------|------|------|------|------|
| 晴海     | 0.50 | 0.55 | 0.34 | 0.64 | 0.47 |
| 白金     | 0.36 | 0.33 | 0.32 | 0.43 | 0.37 |
| 練馬     | 0.27 | 0.23 | 0.24 | 0.39 | 0.18 |
| 綾瀬     | 0.44 | 0.28 | 0.26 | 0.81 | 0.49 |
| 鹿骨     | 0.29 | 0.25 | 0.19 | 0.42 | 0.29 |
| 東青梅    | 0.20 | 0.15 | 0.28 | 0.18 | 0.12 |
| 町田     | 0.23 | 0.20 | 0.22 | 0.32 | 0.13 |
| 小金井    | 0.25 | 0.19 | 0.23 | 0.40 | 0.16 |
| 愛宕     | 0.20 | 0.18 | 0.16 | 0.27 | 0.11 |
| 下連雀    | 0.23 | 0.20 | 0.19 | 0.35 | 0.15 |
| 平均     | 0.30 | 0.25 | 0.24 | 0.42 | 0.25 |
| 標準偏差   | 0.10 | 0.11 | 0.05 | 0.17 | 0.14 |
| 相対標準偏差 | 33.5 | 42.7 | 22.4 | 40.9 | 56.0 |

| 重 | 油 | 燃焼 |
|---|---|----|
| _ | • |    |

| 王道派派   |      |      |                      |      |      |
|--------|------|------|----------------------|------|------|
|        | All  | 春    | 夏                    | 秋    | 冬    |
| 晴海     | 1.51 | 1.97 | 2.73                 | 0.51 | 0.76 |
| 白金     | 1.53 | 1.99 | 2.97                 | 0.74 | 0.91 |
| 練馬     | 0.75 | 0.95 | 1.49                 | 0.30 | 0.39 |
| 綾瀬     | 1.14 | 1.28 | 2.07                 | 0.49 | 0.42 |
| 鹿骨     | 1.28 | 1.67 | 1.94                 | 0.40 | 0.62 |
| 東青梅    | 0.42 | 0.43 | 0.89                 | 0.17 | 0.23 |
| 町田     | 0.62 | 0.74 | 1.04                 | 0.36 | 0.33 |
| 小金井    | 0.70 | 0.80 | 1.14                 | 0.36 | 0.31 |
| 愛宕     | 0.65 | 0.84 | 1.11                 | 0.35 | 0.28 |
| 下連雀    | 0.85 | 1.02 | 1.60                 | 0.39 | 0.36 |
| 平均     | 0.95 | 1.17 | 1.70                 | 0.41 | 0.46 |
| 標準偏差   | 0.37 | 0.51 | 0.68                 | 0.14 | 0.22 |
| 相対標準偏差 | 39.3 | 43.9 | 40.2                 | 35.1 | 47.0 |
|        |      | 単位:μ | g/m <sup>3</sup> (相対 | 標準偏差 | のみ%) |

単位: µg/m<sup>3</sup>(相対標準偏差のみ%)

廃棄物焼却

| 庞米的加科  |      |      |      |      |      |
|--------|------|------|------|------|------|
|        | All  | 春    | 夏    | 秋    | 冬    |
| 晴海     | 0.66 | 0.53 | 0.46 | 0.82 | 0.69 |
| 白金     | 0.59 | 0.42 | 0.19 | 0.88 | 0.66 |
| 練馬     | 0.75 | 0.44 | 0.53 | 1.00 | 0.67 |
| 綾瀬     | 0.88 | 0.57 | 0.45 | 1.02 | 1.18 |
| 鹿骨     | 0.82 | 0.49 | 0.71 | 1.03 | 0.99 |
| 東青梅    | 0.38 | 0.45 | 0.38 | 0.73 | 0.10 |
| 町田     | 0.56 | 0.44 | 0.48 | 0.82 | 0.13 |
| 小金井    | 0.59 | 0.35 | 0.51 | 0.85 | 0.52 |
| 愛宕     | 0.77 | 0.50 | 0.66 | 0.98 | 0.22 |
| 下連雀    | 0.74 | 0.52 | 0.72 | 0.99 | 0.48 |
| 平均     | 0.67 | 0.47 | 0.51 | 0.91 | 0.56 |
| 標準偏差   | 0.14 | 0.06 | 0.15 | 0.10 | 0.33 |
| 相対標準偏差 | 20.7 | 12.7 | 30.3 | 10.9 | 59.3 |

| 自動車排出ガス |      |      |      |      |      |  |  |
|---------|------|------|------|------|------|--|--|
|         | All  | 春    | 夏    | 秋    | 冬    |  |  |
| 晴海      | 2.69 | 2.00 | 2.25 | 3.75 | 2.62 |  |  |
| 白金      | 1.83 | 1.07 | 1.20 | 2.87 | 1.97 |  |  |
| 練馬      | 2.44 | 1.77 | 1.96 | 3.32 | 2.57 |  |  |
| 綾瀬      | 2.38 | 1.57 | 1.45 | 3.72 | 3.01 |  |  |
| 鹿骨      | 2.30 | 1.29 | 1.77 | 3.59 | 2.82 |  |  |
| 東青梅     | 2.02 | 1.51 | 2.29 | 2.38 | 1.98 |  |  |
| 町田      | 1.99 | 1.41 | 1.55 | 2.79 | 2.03 |  |  |
| 小金井     | 2.22 | 1.29 | 1.75 | 3.29 | 2.54 |  |  |
| 愛宕      | 2.28 | 1.45 | 1.71 | 3.20 | 2.33 |  |  |
| 下連雀     | 2.87 | 2.00 | 2.32 | 3.95 | 2.95 |  |  |
| 平均      | 2.30 | 1.54 | 1.83 | 3.29 | 2.48 |  |  |
| 標準偏差    | 0.30 | 0.29 | 0.36 | 0.47 | 0.37 |  |  |
| 相対標準偏差  | 13.0 | 18.9 | 19.7 | 14.2 | 15.1 |  |  |

単位: µg/m<sup>3</sup>(相対標準偏差のみ%)

ブレーキ粉じん

|        | All  | 春    | 夏    | 秋    | 冬    |
|--------|------|------|------|------|------|
| 晴海     | 0.32 | 0.26 | 0.20 | 0.49 | 0.35 |
| 白金     | 0.46 | 0.39 | 0.36 | 0.63 | 0.43 |
| 練馬     | 0.27 | 0.35 | 0.41 | 0.41 | 0.00 |
| 綾瀬     | 0.58 | 0.35 | 0.35 | 0.54 | 0.69 |
| 鹿骨     | 0.29 | 0.23 | 0.01 | 0.49 | 0.33 |
| 東青梅    | 0.40 | 0.16 | 0.50 | 0.63 | 0.21 |
| 町田     | 0.30 | 0.28 | 0.52 | 0.47 | 0.20 |
| 小金井    | 0.28 | 0.27 | 0.30 | 0.59 | 0.03 |
| 愛宕     | 0.19 | 0.28 | 0.50 | 0.13 | 0.18 |
| 下連雀    | 0.21 | 0.15 | 0.25 | 0.51 | 0.08 |
| 平均     | 0.33 | 0.27 | 0.34 | 0.49 | 0.25 |
| 標準偏差   | 0.11 | 0.08 | 0.15 | 0.14 | 0.20 |
| 相対標準偏差 | 34.3 | 27.4 | 44.6 | 28.0 | 79.4 |

単位:μg/m<sup>3</sup>(相対標準偏差のみ%)

単位:μg/m<sup>3</sup>(相対標準偏差のみ%)

| 植物質燃焼類 |      |      |      |      |      |
|--------|------|------|------|------|------|
|        | All  | 春    | 夏    | 秋    | 冬    |
| 晴海     | 0.22 | 0.00 | 0.38 | 0.00 | 1.03 |
| 白金     | 0.39 | 0.00 | 1.42 | 0.00 | 1.01 |
| 練馬     | 0.18 | 0.00 | 0.71 | 0.00 | 1.48 |
| 綾瀬     | 0.00 | 0.00 | 1.34 | 0.00 | 0.00 |
| 鹿骨     | 0.00 | 0.00 | 0.00 | 0.00 | 0.45 |
| 東青梅    | 1.20 | 0.00 | 1.48 | 0.00 | 3.16 |
| 町田     | 0.66 | 0.00 | 1.40 | 0.00 | 2.72 |
| 小金井    | 0.48 | 0.00 | 0.73 | 0.00 | 1.80 |
| 愛宕     | 0.23 | 0.00 | 1.00 | 0.00 | 2.69 |
| 下連雀    | 0.33 | 0.00 | 0.15 | 0.00 | 2.18 |
| 平均     | 0.37 | 0.00 | 0.86 | 0.00 | 1.65 |
| 標準偏差   | 0.34 | 0.00 | 0.52 | 0.00 | 0.99 |
| 相対標準偏差 | 91.5 | 1    | 61.0 | -    | 59.9 |

単位:μg/m<sup>3</sup>(相対標準偏差のみ%)

各地点の全データに対する計算結果では、

- ・土壌・道路粉じんと自動車排出ガスのばらつきが小さく、植物質燃焼類のばらつきが他に比 べて、特に大きい。
- ・植物質燃焼類の寄与濃度は区部が低く、多摩部が高い。

・海塩粒子と重油燃焼はともに東京湾に近い晴海、白金、鹿骨で寄与濃度が高い。

という特徴がみられた。また、寄与濃度が低いと、ばらつきが大きい傾向がある(土壌・道路粉 じんの夏季と秋季、海塩粒子の秋季など)。

4-3-5 過去の調査との比較

本調査の結果(平成20年度)を平成13年度のディーゼル車排出ガス関連環境調査\*と比較した。ただし、比較する上で平成13年度の調査には、いくつか注意しなくてはならない点がある。

- ・PM2.1を対象としている。
- ・炭素分析の方法が本調査と異なっており、元素状炭素が過大評価となっている。
- ・アンチモンが分析されておらず、ブレーキ粉じんの寄与が計算されていない。
- ・二次粒子とその他が二次生成として分類されている。
- したがって、ここでは定性的な比較のみを行うこととする。
- \* ディーゼル車排出ガスと花粉症の関連に関する調査委員会報告書 別冊 ディーゼル車排出ガス関連環境 調査 平成15年5月 東京都
- ① 質量濃度



② 寄与割合





いずれもデータを一般環境と道路沿道に分類している。自動車排出ガスの寄与濃度は、

・平成13年度:全データ16.26µg/m<sup>3</sup>、一般環境10.22µg/m<sup>3</sup>、道路沿道22.30µg/m<sup>3</sup>

・平成 20 年度: 全データ 3.07µg/m<sup>3</sup>、一般環境 2.35µg/m<sup>3</sup>、道路沿道 4.15µg/m<sup>3</sup>

であった。平成 20 年度は平成 13 年度と比べて、粉じん量が大きく減少しており、自動車排出 ガスの寄与濃度が特に小さくなっている。

#### 第5章 まとめ

東京都における平成20年度のPM2.5大気環境調査結果を用いて、レセプターモデル(PMF法、 CMB法)により発生源寄与割合を推定した。

PMF 法による計算を行った。その結果、CMB 法で寄与割合を推定した発生源が、PMF 法に よっても因子として抽出された。

CMB 法による計算の際、まず発生源プロファイルの整理を行った。既存プロファイルに含ま れる発生源のうち、土壌・道路粉じんと廃棄物焼却の更新、さらに新たな発生源として調査され た植物質燃焼類(野焼き)の追加を検討した。その結果、既存プロファイルに植物質燃焼類を追 加し、8発生源により計算を行うことにした。

計算の結果、二次粒子の寄与割合が大きいことがわかった(ほぼ 2/3 を占める)。データを一 般環境と道路沿道に分類し比較をしたところ、道路沿道では自動車排出ガスやブレーキ粉じんの 寄与が大きかった。

・自動車排出ガス:一般環境 11.6%、道路沿道 18.8%

・ブレーキ粉じん:一般環境1.7%、道路沿道2.4%

ー般環境のデータを区部と多摩部に分類し比較をしたところ、区部では重油燃焼、多摩部では植物質燃焼類の寄与が大きかった。

・重油燃焼:区部 6.0%、多摩部 2.9%

・植物質燃焼類:区部 0.7%、多摩部 2.5%

また、地点間の寄与濃度のばらつきは、各地点の全データに対する計算結果で、土壌・道路粉じんと自動車排出ガスが小さく、植物質燃焼類が大きかった(値は相対標準偏差、各地点の寄与濃度の標準偏差を平均で割って100をかけている)。

・土壌・道路粉じん: 7.9%

- ・自動車排出ガス:13.0%
- 植物質燃焼類:91.5%

参考として、平成 13 年度の調査結果と比較を行った。この結果、平成 20 年度には粉じん量が 大きく減少していたが、これは自動車排出ガスからの寄与濃度が減少したためであった。 資料 東京都版 CMB モデル用発生源プロファイルの検討について

- 基本的考え方
- (1) 平成 20、21 年度に行った発生源調査の結果を可能な限り採用し、東京都の発生源特性 に見合ったプロファイルを作成する。
- (2)環境省調査\*の発生源区分を参考とし、7つのプロファイルのうち、今回の調査結果が 採用できる場合については更新する。ただし、ほとんどが単数回の調査であり、発生 源特性を代表できる精度の高い測定結果が得られているとは限らないため、環境省調 査のプロファイルと比較し、同様である場合にはそちらを基本的に採用する。
- (3)新たな発生源として調査を行ったバイオ燃焼、厨房排気等については、プロファイルの追加を検討する。
- (4)更新、追加したプロファイルを含めて、数種類の組み合わせで CMB8 による計算を行い、 発生源インベントリーや PMF 計算結果等との比較により、合理的なプロファイルを確 定する。
- (5) 合理的なプロファイルが確定できない場合は、可能性の否定できない数種のプロファ イルを採用し、発生源寄与率を範囲で示すこととする。

\*環境省調査:平成 20 年度環境省請負業務結果報告書、「平成 20 年度微小粒子状物質等実測調査(データ 解析(発生源寄与濃度の推計)報告書)」、平成 21 年 3 月、ムラタ計測器サービス株式会社

2. 発生源毎のプロファイルの検討

(1) ボイラ (重油): *"Fuel oil combustion"* 

20 年度施設 No.9のダスト、SPM、PM<sub>2.5</sub>の相関が高く、1 施設 3 回のデータとみなし、これらの平均を都の仮プロファイルとした。これを既存プロファイルと比較したところ、比較的類似性が高いと認められたので、データの件数、信頼性を考慮して、既存プロファイルを採用することとした(図1参照)。

(2) 廃棄物焼却炉(都市ごみ): "Refuse incineration"

20 年度施設 No. 3 の PM<sub>2.5</sub> と 20 年度施設 No. 3 の SPM、20 年度施設 No. 4 の PM<sub>2.5</sub> の相関が高 く、2 施設での3回のデータとみなし、これらの平均を都の仮プロファイルとする(図1参 照)。下水処理場は別扱い。ただし、粒子状物質の採取量が非常に少ないため、代表的な成 分組成とは言えない状況である。

最終的には、データの代表性、信頼性が低いため、既存プロファイルを採用することとした。

(3) 土壌及び道路粉じん: "Road dust"

土壌及び道路粉じんについては、今回の独自に行った道路沿道及び一般環境における成 分の各地点の相関が高いので、これら全ての平均を都の仮プロファイルとすることとした (図1参照)。

(4) 自動車排出ガス (ディーゼル): *"Motor vehicle exhaust"* 

21 年度施設 No. 12 の自動車排出ガス 6 の PM<sub>2.5</sub>とそのダスト、SPM、21 年度施設 No. 22 の PM2.5 の相関が高いので、これらの平均を都の仮プロファイルとした(図1参照)。

しかし、元年規制の古いエンジンでのデータが中心であるため、データの信頼性を考慮 して、既存プロファイルを採用することとした。

(5)*鉄鋼工業:"Iron&steel industries"* 

更新するために必要なデータが得られなかったため、既存プロファイルを採用することとした。

(6) *海塩: "Sea salt"* 

海塩成分に基づく既存プロファイルを採用することとした。

(7) ブレーキ粉塵: "Brake abrasion dust"

更新するために必要なデータが得られなかったため、既存プロファイルを採用することとした。

- (8) バイオ燃焼のプロファイルについて
  - (ア) 発生源調査結果の検討

平成 20、21 年度に行った発生源調査の結果から、21 年度施設 No. 4 のタバコ、No. 7 の野焼き(稲わら)、No. 8 の野焼き(雑草・剪定枝)を用いて、仮プロファイルとし て検討した。

(イ) レボグルコサン測定結果の検討

植物繊維の代表的な燃焼成分として知られるレボグルコサンについて、埼玉大に よる発生源データの結果から、稲わら等のレボグルコサン含有率(wt%)を求め、 プロファイルの追加を検討した。環境でのレボグルコサンの測定を行った4地点の 大気環境データを使用して CMB 法による試算を行った。

(ウ) EPA のデータベース SPECIATE の検討

都調査において、稲わら等のバイオ燃焼については、検出された元素数が少なかったため、そのままプロファイルとして採用すると合理的ではない結果が得られていた。そのため、EPAのデータベース SPECIATE4.2 から、Agricultural Burning - Composite (No.91000:9種類の小麦、稲わらのプロファイルの中央値)の元データと都調査の稲わら及び雑草・剪定枝の PM<sub>2.5</sub>の二つのデータを採用し、計 11 データの中央値を求めた。



図1 既存プロファイルとの比較 (横軸:既存プロファイル、縦軸:仮プロファイル)

3. 東京都版 CMB モデル用発生源プロファイルの設定

上記の検討により、幾つかのプロファイルを設定し、年間平均、季節変化、道路沿道と 一般環境の違いなどについて CMB 法による試算を行った結果は以下の通りである。

(1) プロファイルの検証

プロファイルについては、下記の5通りのパターンを設定し、レセプターワーキングの 柏木委員の協力を得て、対数尤度による検定を行った。その結果、対数尤度の値が最大で あるパターン1(植物質追加)を選択することとした。

- ① パターン0(既存プロファイル)
- パターン1(植物質追加)
- 3 パターン2(植物質追加、土壌更新)
- ④ パターン3(植物質追加、廃棄物更新)
- ⑤ パターン4(植物質追加、土壌および廃棄物更新)

(2) 最終的なプロファイルの概要

既存の7つのプロファイルについては、発生源調査からプロファイルを更新するだけの 十分なデータは得られなかったため、基本的に平成20年度環境省調査のプロファイルを採 用することとした。発生源からのPM<sub>2.5</sub>排出実態については質量濃度、成分濃度ともに精度 の高いデータが必要であり、インベントリーの整備とともに今後の重要な課題である。

バイオ燃焼のプロファイルについては、レボグルコサン調査や炭素同位体調査からその 寄与が報告されているため、新たに追加することとした。プロファイルについては、EPA デ ータベース SPECIATE4.2の小麦、稲わらのプロファイルに都調査結果を追加することで作 成した。タバコは採用しなかった。 なお、道路粉じんについては、今回設定したプロファイルと既存プロファイルの差異が なかったので、更新はしていない。

(3) 東京都版 CMB モデル用発生源プロファイル

最終的に使用したプロファイルを表1に示す。環境省調査の7つの発生源プロファイル に植物質燃焼のプロファイルを加えたものになっている。

|    | (単位:mg/k |       |        |        |        |        |        |        | /kg)  |
|----|----------|-------|--------|--------|--------|--------|--------|--------|-------|
|    |          | 発生源   |        |        |        |        |        |        |       |
|    | 成分       | 道路    | 海塩     | 鉄鋼     | 石油     | 廃棄物    | 自動車    | ブレーキ   | 植物質   |
|    |          | 粉じん   | 粒子     | 工業     | 燃焼     | 焼却     | 排出ガス   | 粉じん    | 燃焼    |
| 1  | EC       | 12800 | 0.028  | 5000   | 300000 | 50000  | 494000 | 153000 | 97100 |
| 2  | К        | 12700 | 11000  | 13200  | 850    | 200000 | 197    | 3500   | 63200 |
| 3  | Ca       | 55200 | 11700  | 45100  | 850    | 11000  | 1460   | 31800  | 415   |
| 4  | Na       | 12500 | 304000 | 13600  | 10000  | 120000 | 76.4   | 7600   | 6550  |
| 5  | Al       | 61100 | 0.29   | 9990   | 2100   | 4200   | 1570   | 19400  | 370   |
| 6  | V        | 108   | 0.058  | 125    | 6380   | 27     | 7.25   | 59     | 0     |
| 7  | Mn       | 1060  | 0.058  | 22000  | 120    | 330    | 19.3   | 720    | 10    |
| 8  | Sc       | 13.3  | 0.0012 | 1.32   | 0.09   | 0.46   | 0.119  | 4      | 0     |
| 9  | Cr       | 279   | 0.0015 | 3160   | 210    | 850    | 11.6   | 421    | 0     |
| 10 | Fe       | 53100 | 0.29   | 157000 | 4600   | 6100   | 989    | 91200  | 100   |
| 11 | Zn       | 1310  | 0.029  | 51500  | 400    | 26000  | 624    | 3260   | 100   |
| 12 | As       | 11.3  | 0.029  | 103    | 23     | 150    | 3.69   | 22     | 0     |
| 13 | Se       | 1.43  | 0.12   | 51.1   | 48     | 0      | 1.67   | 3.5    | 0     |
| 14 | Br       | 4.64  | 1900   | 144    | 8.5    | 830    | 24.5   | 49     | 280   |
| 15 | Sb       | 13    | 0.014  | 90     | 6.9    | 952    | 19.6   | 2130   | 0     |
| 16 | La       | 31.3  | 0.009  | 9.75   | 40     | 7.7    | 0.341  | 7      | 0     |

表1 東京都版 CMB モデル用発生源プロファイル

# 東京都微小粒子状物質検討会 シミュレーションワーキング報告書 --シミュレーションモデルによる PM2.5 環境濃度の予測--

シミュレーション手法に関するワーキンググループ

# 目 次

| 1 | シ    | ミュレーションに関する検討会の方針と WG 設置     | .375 |
|---|------|------------------------------|------|
| 2 | シ    | ミュレーションモデルの作成                | .376 |
| 3 | 発    | 生源インベントリ整備及び排出量推計(東京都及び関東6県) | .378 |
| 4 | ٩N   | 𝚛₅シミュレーション(モデル併用の検討)         | .385 |
| 5 | 数    | 値型モデルによるシミュレーション             | .388 |
|   | (1)  | 数値型モデルの構成                    | .388 |
|   | (2)  | 計算対象領域、境界条件及び初期条件            | .388 |
|   | (3)  | 中部日本域(関東地域外)発生源の排出量          | .389 |
|   | (4)  | 対象年度·期間等                     | .390 |
|   | (5)  | 現況再現結果                       | .391 |
|   | (6)  | 発生源寄与推定                      | .396 |
|   | (7)  | 数値モデルの計算結果の補正                | .404 |
|   | (8)  | 発生源寄与推定結果の補正                 | .408 |
|   | (9)  | 単純将来濃度計算結果                   | .411 |
|   | (10) | 単純将来発生源寄与推定                  | 412  |
|   | (11) | 単純将来濃度計算結果の補正                | 416  |
|   | (12) | 単純将来発生源寄与推定結果の補正             | .418 |
|   | (13) | 対策将来濃度計算結果及びその補正             | .422 |
| 6 | ま    | とめ                           | .424 |
|   | (1)  | 経緯と評価                        | .424 |
|   | (2)  | 推計結果                         | 424  |
|   | (3)  | 今後の課題                        | 425  |
|   |      |                              |      |

#### シミュレーション手法に関するワーキング・グループ(WG)の報告

#### 1 シミュレーションに関する検討会の方針と WG 設置

PM<sub>2.5</sub>検討会において、PM<sub>2.5</sub>の将来濃度の推定や対策効果等を検討するために作成する シミュレーションモデルでは、以下の5点を目標として手法の検討を進めることとなった。

- (1) 東京都周辺(1都6県)における PM。5の年平均濃度を予測する。
- (2) PM<sub>25</sub>濃度とともに、その成分濃度についてもある程度の再現性を確保する。
- (3) 二次粒子モデルの再現性については、将来予測・対策評価の検討に資するために、 その生成過程における化学的非線形性を考慮できるものとする。
- (4) オキシダントについては二次粒子生成を考慮する中で検討する。
- (5) PM。。が長寿命であることを考慮して、広域移流を考慮したモデルとする。

更に、上記の目標及び予測モデルの現在までの到達点並びに東京都周辺地域における PM<sub>2.5</sub>の組成が、一次粒子と二次粒子で半々程度であること等を考慮し、以下のような解析 型モデルと数値型モデルの長所を取り込んだモデルを作成することが了承された。

- ① 解析型モデル (定常モデル)
  - プルーム・パフ型
  - 一次排出粒子を対象とした年平均値の再現
  - ・ 寄与率の評価はレセプターモデルと連携し、精度向上を目指す。
- ② 数値型モデル(非定常モデル)
  - ・ 気象モデル、大気質(移流、拡散・反応)モデル、粒子化モデル
  - ・ 二次生成粒子を対象とした日ベースの予測

(代表的な気象パターン下の予測値を重み付けし年平均値で評価)

なお、計算領域(解析モデルの発生源領域)、境界条件、発生源インベントリーなど は、両モデルでできるだけ共通化して作成することとした。

以上の PM<sub>2.5</sub>シミュレーションモデル作成方針を受け、PM<sub>2.5</sub>及び光化学オキシダントに 係る発生源インベントリーを整理・作成し、シミュレーションモデルを用いてそれらの 環境濃度を再現し、発生源寄与割合の推定を行う。さらに、作成したモデルを用いて将 来年度及び対策後の濃度予測を行うこととした。これらに係るシミュレーションの手法 を具体的に検討するため以下の学識経験者を構成メンバーとする WG を設置した。

| 座長 | 大原利眞  | 独立行政法人国立環境研究所地域環境研究センター長 |
|----|-------|--------------------------|
| 委員 | 速水 洋  | 財団法人電力中央研究所環境科学研究所上席研究員  |
| 委員 | 森川多津子 | 財団法人日本自動車研究所主任研究員        |

#### 2 シミュレーションモデルの作成

#### 2-1 概要

微小粒子状物質(PM<sub>2.5</sub>)及び光化学オキシダントに係る大気汚染物質の発生源インベントリーを整理し、シミュレーションモデル(数値型モデル及び解析型モデル)を用いてそれらの環境濃度を再現し、発生源寄与割合の推定を行う。さらに、作成したモデルを用いて将来年度及び対策後の濃度予測を行う。

#### 2-2 発生源インベントリの整備及び排出量の作成

- ・室素酸化物等排出量算出調査結果(東京都)、自動車排出量算出調査(東京都)、発 生源調査(東京都)、発生源インベントリー(埼玉県、千葉県、神奈川県)、環境省マ ップデータ(茨城県、栃木県、群馬県)及び EA-Grid2000 Japan, JATOP データ等により、 関東地方の発生源情報を整備する。
- ② 収集データの排出量を発生源などの活動指標により 2008 年ベースに修正する。 ただし、都内自動車排出量は炭素成分の排出係数を追加し、2008 年ベースの規制年 別構成率及び走行量を算出し、作成する。
- ③ NMHCは、発生源種別成分情報(フィンガープリント)により VOC 成分に割り振る。

#### 表1 平成 20 年度インベントリの整備及び排出量の作成

| 発生源種類                     | 東京都                                                                                      | 千葉県、埼玉県、神奈川県                                                                                | 茨城県、栃木県、群馬県                                                                                            | EAgrid2000(北関東分)      |
|---------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------|
| 工場・事業場                    | H19東京都ばい煙発生施設データより作<br>成する。(H20は確定していない)                                                 | H17発生源及び排出量をそのまま使用<br>する。(H17マップ調査)                                                         | H17発生源及び排出量を作成する。<br>(H17マップ調査)                                                                        | 左欄のトータル排出量として<br>使用する |
| 炭化水素類<br>発生施設             | H17とH22排出量から内挿する                                                                         | H17とH22排出量から内挿する                                                                            | 環境省 揮発性有機化合物排出インベ<br>ントリ(H21.3)の排出量を(H19/H12)比<br>率で補正して、作成する。                                         | 左欄のトータル排出量として<br>使用する |
| 自動車                       | ①排出量はH20の排出係数と走行量より<br>算定する。<br>②湿度温度補正・スタート時排出量・<br>蒸発分は、H17とH20の走行量及び排出<br>量の推移から推定する。 | N0xPM進行管理調査より、H19/H17の排<br>出量比率をH17排出量に乗じる。<br>湿度温度補正、スタート時補正、燃料<br>からの蒸発分は、都内分に準じ推定す<br>る。 | 3県の進行管理調査(H22)の(H17/H12)<br>比率の平均値をH12排出量に乗じて作<br>成する。<br>湿度温度補正、スタート時補正、燃料<br>からの蒸発分は、都内分に準じ推定す<br>る。 | 左欄のトータル排出量として<br>使用する |
| 船舶                        | 既存の排出源情報及び別途調査の東京<br>港排出量を使用する                                                           | 既存の排出源情報及び別途調査の千葉<br>港、横浜港・川崎港の排出量を使用す<br>る。(排出量分布を確認中)                                     | 既存の排出源情報及び別途調査の鹿島<br>港の排出量を使用する。(確認中)                                                                  | 左欄のトータル排出量として<br>使用する |
| 建設機械                      | H17とH22排出量から内挿する                                                                         | H17とH22排出量から内挿する                                                                            | H12とH22排出量から内挿する                                                                                       | 左欄のトータル排出量として<br>使用する |
| 群小・家庭・<br>焼却炉・<br>粉じん発生施認 | H17とH22排出量から内挿する<br>そ                                                                    | H17とH22排出量から内挿する                                                                            | H12とH22排出量から内挿する                                                                                       | 左欄のトータル排出量として<br>使用する |
| 屋外燃焼                      | 該当なし                                                                                     | H17とH22排出量から内挿する<br>(千葉県のみ)                                                                 |                                                                                                        |                       |
|                           |                                                                                          |                                                                                             |                                                                                                        |                       |

(対象物質:SOx, NOx, ばいじん(PM), VOC, HC)

#### 2-3 濃度予測方法

平成 20 年度関東地方の大気汚染状況を再現するために、手法の異なる 2 つのシミュレ ーションモデルを作成し、両者を併用して、濃度予測を行う。

#### (1) 数値型モデル

数値型シミュレーションモデルを作成し、SPM 及び PM<sub>2.5</sub>成分別濃度予測(現況再現)を行う。 対象領域は図1の太枠に示す関東域(5km メッシ ュ)とし、その外周に設定した中部日本域(15km メッシュ)からネスティングを行う。中部日本 域の境界条件は、国立環境研究所の大気汚染予 測システム(RAMS+CMAQ)の計算結果の提供を受 け、そのデータを用いて設定する。予測対象日 は、2008 年度に実施した環境濃度調査日(四季 各14日間)とする。本モデルにより光化学オキ シダント濃度予測も行う。



(2) 解析型モデル

「浮遊粒子状物質汚染予測マニュアル」に準拠 した解析型モデルを作成し、SPM 及び PM<sub>2.5</sub>成分別 濃度の予測を行う。対象領域は図 2 に示す関東域 (発生源把握・計算とも 1 都 6 県域)とする。対

象項目は SPM、PM<sub>2.5</sub>の年平均濃度(2008 年度)と する。





図2 解析型モデルの対象領域

- (3) シミュレーション結果の精度検証
  - 計算結果の検証用データ 関東地域大気常時監視データ、PM<sub>2.5</sub>広域調査データ及び平成 20 年度東京都 PM<sub>2.5</sub>環 境調査データ並びにその CMB 解析結果
  - モデル評価方法

SPM、PM<sub>2.5</sub>、0xの各1時間値をUS-EPAの旧ガイドライン中の評価指標(NB, NGE, MPA) 及び「浮遊粒子状物質汚染予測マニュアル」記載の手法によって評価する。

(4) PM<sub>25</sub>年平均濃度の推定

数値型モデル及び解析型モデルの計算結果を活用して、PM。」濃度の年平均値を推定する。

(5) 将来濃度予測

PM。濃度及び光化学オキシダント濃度について、それぞれ次の試算を行う。

- 平成 28 年度(単純将来)の PM<sub>2.5</sub>年平均濃度(総量及び主要成分の内訳)予測を行う。
- ② 数値型モデルによる平成20年度現況再現結果をもとに、原因物質濃度(排出量)を 段階的に削減した場合に、現況の光化学オキシダント濃度に及ぼす効果予測(感度分析)を行う。
- 2-4 環境濃度の解析

関東地方全域の PM。。及び光化学オキシダント濃度について以下の解析を行う。

- (1) PM<sub>25</sub>濃度
  - ① 平成 16~20 年度の PM<sub>2.5</sub>環境濃度データ(都・環科研、埼玉県・環科科学国際セン ター、環境省(国設局、常監局)など)を対象として、気象条件、濃度分布等を基準 に汚染パターン分類を行い、各パターンの出現頻度(重み付け係数)を整理する。
  - ② 数値型モデルの予測対象日(期間:平成 20 年度東京都 PM<sub>2.5</sub>環境調査実施期間)が、 前項で分類した汚染パターンのどれに当たるか、分類・整理する。また、各パターン の出現頻度について、予測対象日(期間)に各季節の典型的な傾向が表れているかと いう面から、予測対象日(期間)の代表性を検討する。
- (2) 光化学オキシダント濃度

平成 12 年度から平成 20 年度の関東地方における光化学オキシダントの高濃度出現日 データを整理し、気象条件や濃度分布に基づく高濃度パターン別に出現頻度を求め、予 測対象日を決定する。

- 3 発生源インベントリ整備及び排出量推計(東京都及び関東6県)
- (1) 2008 年度現況の作成方針

東京都内及び関東6県の表2に掲げる発生源について、大気汚染物質ごとに排出量の 集計を行い、発生源インベントリーを整備する。

| 発生源種類    |            |                                         | SOx        | NOx        | PM         | PM <sub>2.5</sub> | NM<br>VOC  | HC1        |
|----------|------------|-----------------------------------------|------------|------------|------------|-------------------|------------|------------|
| 燃焼系発生源   | 固定         | 大規模固定煙源                                 | 0          | 0          | $\bigcirc$ | $\bigcirc$        | $\bigcirc$ | 0          |
|          |            | 民生(家庭)                                  | 0          | $\bigcirc$ | 0          | $\bigcirc$        | $\bigcirc$ |            |
|          |            | 民生(業務)                                  | $\bigcirc$ | $\bigcirc$ | 0          | $\bigcirc$        | $\bigcirc$ |            |
|          |            | 小型焼却炉                                   | 0          | $\bigcirc$ | $\bigcirc$ | $\bigcirc$        | $\bigcirc$ | 0          |
|          |            | 粉じん発生施設                                 |            |            | $\bigcirc$ | $\bigcirc$        |            |            |
|          |            | 野焼き                                     | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$        | $\bigcirc$ | $\bigcirc$ |
|          | 移動発生源      | 自動車(4輪)                                 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$        | $\bigcirc$ |            |
|          |            | 自動車(2輪)                                 | 0          | $\bigcirc$ | 0          | $\bigcirc$        | $\bigcirc$ |            |
|          |            | 船舶                                      | 0          | $\bigcirc$ | 0          | $\bigcirc$        | $\bigcirc$ |            |
|          |            | 航空機                                     | 0          | $\bigcirc$ | $\bigcirc$ | $\bigcirc$        | $\bigcirc$ |            |
|          |            | 建設機械                                    | 0          | 0          | 0          | 0                 | 0          |            |
|          |            | 産業機械                                    | 0          | 0          | 0          | 0                 | 0          |            |
|          |            | 農業機械                                    | 0          | 0          | 0          | 0                 | 0          |            |
|          |            | 鉄道                                      |            |            | 0          | 0                 |            |            |
|          |            | タバコ                                     | 0          | 0          | 0          | 0                 | 0          |            |
|          |            | 調理                                      |            |            | 0          | 0                 |            |            |
| HC 蒸発発生源 | 工業系        | 精油所·油槽所                                 |            |            |            |                   | 0          |            |
|          |            | 給油所                                     |            |            |            |                   | 0          |            |
|          |            | 石油化学工場                                  |            |            |            |                   | 0          |            |
|          |            | 塗料製造                                    |            |            |            |                   | 0          |            |
|          |            | インキ製造                                   |            |            |            |                   | 0          |            |
|          |            | 塗装                                      |            |            |            |                   | 0          |            |
|          |            |                                         |            |            |            |                   | 0          |            |
|          |            | 接看剤使用                                   |            |            |            |                   | 0          |            |
|          |            | <u>上</u> 兼用洗净浴剂                         |            |            |            |                   | 0          |            |
|          |            | コム用溶剤                                   |            |            |            |                   | 0          |            |
|          | 卢舟         | クリーニング浴剤                                |            |            |            |                   | 0          |            |
| この仙珍生酒   | 日次         | 植物起源                                    |            |            |            |                   | 0          |            |
| ての他先生你   | 辰耒         | 宙生                                      |            |            |            |                   | 0          |            |
|          | 丁坐玄        | 11-1-11-11-11-11-11-11-11-11-11-11-11-1 |            |            |            |                   | 0          |            |
|          | 山東ボ        | <b> </b>                                |            |            |            |                   | 0          |            |
|          | 都巾活動       | 下水処理施設                                  |            |            |            |                   | 0          |            |
|          |            | 净化槽                                     |            |            |            |                   | 0          |            |
|          |            | 人の発汗・呼吸                                 |            |            |            |                   | 0          |            |
|          | イタチョンシュレンマ | ベット<br>*** し ド                          |            |            | ~          |                   | $\bigcirc$ |            |
|          | 移動発生源      | 香き上け                                    |            |            | 0          | 0                 |            |            |
|          | 目然         |                                         |            |            | 0          | 0                 |            |            |
|          |            | 火山                                      | $\bigcirc$ |            | $\bigcirc$ | $\bigcirc$        |            | $\bigcirc$ |

# 表2 作成する発生源インベントリの種類と大気汚染物質

## (2) 東京都内発生源の排出量

表2に掲げた発生源及び大気汚染物質について、既存のデータを表3の方法により 修正し作成する。

|     | 発生源区分                                  | H20インベントリ修正方法                                                                   |  |  |  |  |  |
|-----|----------------------------------------|---------------------------------------------------------------------------------|--|--|--|--|--|
| 東京都 | 大規模固定煙源                                | 「ばい煙排出量調査結果(H20年度実績)データ」に差換える。ばい煙発生施設種類別/燃料種類別/処理装置の有<br>無別に集計する。               |  |  |  |  |  |
|     | 民生                                     |                                                                                 |  |  |  |  |  |
|     | 家庭用                                    | 文献から排出係数見直し案を作成し、協議の上決定する。その後、都市ガス、LPG使用量をH20統計値で補正し、排出量を作成する。発生源種別/燃料種類別に集計する。 |  |  |  |  |  |
|     | 業務用                                    | 同上(排出係数は見直さない。)                                                                 |  |  |  |  |  |
|     | 小型焼却炉                                  |                                                                                 |  |  |  |  |  |
|     | DXN 法対象                                | (修正なし)                                                                          |  |  |  |  |  |
|     | DXN 法対象外                               | (修正なし)                                                                          |  |  |  |  |  |
|     | 粉じん発生施設                                | 大気汚染防止法施行状況調査 H20 実績で一律年次補正する。                                                  |  |  |  |  |  |
|     | 野焼き                                    | H20 実績を追加する。空間・時間配分が必要。                                                         |  |  |  |  |  |
|     | 自動車(4輪)                                |                                                                                 |  |  |  |  |  |
|     | 暖気後排出量                                 | (修正なし)                                                                          |  |  |  |  |  |
|     | 気温湿度補正                                 | (修正なし)                                                                          |  |  |  |  |  |
|     | スタート時排出・RL・DBL・HSL                     | (修正なし)                                                                          |  |  |  |  |  |
|     | タイヤブレーキ摩耗                              | (修正なし)                                                                          |  |  |  |  |  |
|     | 自動車(2輪)                                |                                                                                 |  |  |  |  |  |
|     | [[[一]]][[[]]][[]]][[]]][[]]][[]]][[]]] | (修正なし)                                                                          |  |  |  |  |  |
|     | スタート時排出・DBL・HSL                        | JATOP 提供の平成 17 年データ及び平成 20 年度PRTR届<br>出外排出量の推計結果と比較・確認する(排出量は変更しな<br>い)         |  |  |  |  |  |
|     | タイヤブレーキ摩耗                              | (算出しない)                                                                         |  |  |  |  |  |
|     | 船舶                                     |                                                                                 |  |  |  |  |  |
|     | 停泊中                                    | (修正なし)                                                                          |  |  |  |  |  |
|     | 航行中                                    | 文献値に入港船舶総トン数の伸び率を乗じて、外洋航行中<br>を作成・追加する。                                         |  |  |  |  |  |
|     | タグボート                                  | 湾統計資料からH20年隻数に変化がないか確認する(排出<br>量は変更しない)。                                        |  |  |  |  |  |
|     | 航空機                                    | (修正なし)                                                                          |  |  |  |  |  |
|     | 建設機械等                                  |                                                                                 |  |  |  |  |  |
|     | 建設機械                                   | (修正なし)                                                                          |  |  |  |  |  |
|     | 産業機械                                   | (修正なし)                                                                          |  |  |  |  |  |
|     | 農業機械                                   | (修正なし)                                                                          |  |  |  |  |  |
|     | 鉄道                                     | H20 実績を追加する。                                                                    |  |  |  |  |  |
|     | タバコ                                    | 同上                                                                              |  |  |  |  |  |
|     | 調理                                     | 同上                                                                              |  |  |  |  |  |
|     | VOC 発生施設                               | 環境省VOCインベントリ検討会報告H20/H17実績比で種類別に補正し、VOCの発生源種類別に集計する。                            |  |  |  |  |  |
|     | 民生 VOC                                 | H17~19 実績をH20 に年次補正し、追加する。空間・時間配分が必要(昼夜間人口、面源で一律配分)。また、VOC の発生源種類別に集計する。        |  |  |  |  |  |
|     | 植物起源                                   | EA-Grid2000 を年次補正し、追加する。                                                        |  |  |  |  |  |
|     | アンモニア発生源                               | EA-Grid2000 を年次補正し、追加する。                                                        |  |  |  |  |  |
|     | 火山 三宅島(雄山)                             | 気象庁観測結果を基に追加の可否を検討する。                                                           |  |  |  |  |  |

現況発生源別排出量(東京都)は表4に示すとおりである。この排出量及び表5-2の発生源別排出量(関東6県)を使用して現況シミュレーションを行った。

|     | 発生源種               | <u>汚染物質</u><br>種類 | SOx      | NOx    | PM    | 粉じん   | HCl | THC     | NMVOC   | $\mathrm{NH}_3$ | $\mathrm{PM}_{2.5}$ |
|-----|--------------------|-------------------|----------|--------|-------|-------|-----|---------|---------|-----------------|---------------------|
| 東京都 | 大規模固               | 同定煙源              | 2,084    | 7,914  | 254   |       | 280 |         |         | 38              | 189                 |
|     | 自動車                | (4輪・2輪)           | 50       | 29,040 | 638   | 1,221 |     | 18,363  | 16,069  | 731             | 848                 |
|     |                    | 4輪暖機後             | 43       | 20,373 | 437   |       |     | 3,185   | 2,797   |                 | 437                 |
|     |                    | 2輪暖気後             | 1        | 437    |       |       |     | 4,442   | 3,554   |                 |                     |
|     |                    | 気温湿度補正            | 1        | 1,621  | -1    |       |     | -78     | -65     |                 | -1                  |
|     |                    | スタート時排出           | 5        | 6,609  | 201   |       |     | 6,326   | 5,296   |                 | 201                 |
|     |                    | RL                |          |        |       |       |     | 435     | 435     |                 |                     |
|     |                    | DBL               |          |        |       |       |     | 2,956   | 2,956   |                 |                     |
|     |                    | HSL               |          |        |       |       |     | 1,096   | 1,096   |                 | -                   |
|     |                    | タイヤ・ブレーキ粉じ,       | <i>к</i> |        |       | 1,221 |     |         |         |                 | 210                 |
|     | 船舶                 |                   | 5,792    | 9,743  | 722   |       |     | 403     | 379     |                 | 722                 |
|     |                    | 停泊時               | 1,840    | 2,450  | 214   |       |     | 143     | 135     |                 |                     |
|     |                    | 航行時               | 3,929    | 7,184  | 505   |       |     | 250     | 236     |                 |                     |
|     |                    | タグボート             | 24       | 109    | 3     |       |     | 10      | 9       |                 |                     |
|     | 航空機                |                   | 26       | 4,371  | 157   |       |     | 1,011   | 914     |                 | 140                 |
|     | 民生                 |                   | 96       | 9,222  | 616   |       |     | 2,899   | 1,322   |                 | 416                 |
|     |                    | 都市ガス合計            | 0        | 5,289  | 154   |       |     | 2,196   | 966     |                 | 0                   |
|     |                    | LPG合計             | 0        | 1,164  | 38    |       |     | 621     | 273     |                 | 0                   |
|     |                    | 灯油合計              | 96       | 2,769  | 424   |       |     | 83      | 83      |                 | 0                   |
|     |                    | 都市ガス              | 0        | 3,406  | 31    |       |     |         |         |                 | 24                  |
|     | 家庭用                | LPG               | 0        | 585    | 3     |       |     |         |         |                 | 2                   |
|     |                    | 灯油                | 77       | 2,077  | 343   |       |     |         |         |                 | 264                 |
|     |                    | 都市ガス              | 0        | 1,883  | 124   |       |     | 2,196   | 966     |                 | 65                  |
|     | 業務用                | LPG               | 0        | 579    | 35    |       |     | 621     | 273     |                 | 18                  |
|     |                    | 灯油                | 19       | 692    | 81    |       |     | 83      | 83      |                 | 43                  |
|     | 粉じん発               | <sup>終</sup> 生施設  |          |        |       | 114   |     |         |         |                 | 0                   |
|     | 小型焼劫               | 呃                 | 4        | 16     | 12    |       | 4   | 49      | 10      |                 | 8                   |
|     |                    | DXN対象             | 3        | 14     | 7     |       | 3   | 36      | 7       |                 | 5                   |
|     |                    | DXN対象外            | 1        | 2      | 5     |       | 1   | 13      | 3       |                 | 3                   |
|     | 建設機械               | <b>式</b> 等        | 1        | 8,395  | 392   |       |     | 897     | 711     |                 | 392                 |
|     |                    | 建設機械              | 1        | 5,725  | 291   |       |     | 518     | 488     |                 | 291                 |
|     |                    | 産業機械              | 0        | 2,641  | 99    |       |     | 376     | 220     |                 | 99                  |
|     |                    | 農業機械              | 0        | 29     | 1     |       |     | 3       | 3       |                 | 1                   |
|     | VOC発生)             | 施設                |          |        |       |       |     | 68,228  | 68,228  |                 |                     |
|     | 民生VOC              |                   |          |        |       |       |     | 12,818  | 12,818  |                 |                     |
|     | 野焼き                |                   | 0.1      | 1      | 4     |       |     | 3       | 3       | 0.3             | 2                   |
|     | 鉄直                 |                   |          |        | 158   |       |     |         |         |                 | 72                  |
|     | タバコ                |                   | 4        | 62     | 352   |       |     | 339     | 305     |                 | 235                 |
|     | 調埋                 |                   |          |        | 297   |       |     |         |         |                 | 204                 |
|     | NH <sub>3</sub> 発生 |                   |          |        |       |       |     |         |         | 297             |                     |
|     | NH <sub>3</sub> 発生 |                   |          |        |       |       |     |         |         | 4,809           |                     |
|     | NH₃ 発生             | [源(ての他施設)         |          |        |       |       |     |         |         | 212             |                     |
| 合計  |                    |                   | 8,057    | 68,763 | 3,603 | 1,335 | 284 | 105,010 | 100,759 | 6,086           | 3,230               |

表 4 現況発生源別排出量(H20年度東京都)(t/年)

### (3) 関東6県発生源の排出量

表2に掲げた発生源及び大気汚染物質について、既存のデータを表 5-1 の方法により 修正し作成する。

|               | 発生源区分              | H20 インベントリ修正方法                                                                                                                       |
|---------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 茨栃群埼千神県城木馬玉葉奈 | 大規模固定煙源            | 「大気汚染物質排出量総合調査(H20 実績)データ」に差換<br>える。ばい煙発生施設種類別/燃料種類別/処理装置の<br>有無別に集計。また、塩化水素は、東京都の集計結果を基<br>に施設規模別に排出係数を設定し、施設ごとに配分する(廃<br>棄物焼却炉のみ)。 |
|               | 民生                 |                                                                                                                                      |
|               | 家庭用                | 東京都分に同じ                                                                                                                              |
|               | 業務用                | 同上                                                                                                                                   |
|               | 小型焼却炉              |                                                                                                                                      |
|               | DXN 法対象            | H20 実績を追加する。空間・時間配分が必要。                                                                                                              |
|               | DXN 法対象外           | 同上                                                                                                                                   |
|               | 粉じん発生施設            | 東京都分に同じ                                                                                                                              |
|               | 野焼き                | 東京都分に同じ                                                                                                                              |
|               | 自動車(4輪)            |                                                                                                                                      |
|               | 暖気後排出量             | (修正なし)                                                                                                                               |
|               | 気温湿度補正             | (修正なし)                                                                                                                               |
|               | スタート時排出・RL・DBL・HSL | JATOP 提供の平成 17 年データ及び平成 20 年度PRTR届<br>出外排出量の推計結果から推計する。                                                                              |
|               | タイヤブレーキ摩耗          | (未定)                                                                                                                                 |
|               | 自動車(2輪)            |                                                                                                                                      |
|               | 暖気後排出量             | JATOP 提供の平成 17 年データ及び平成 20 年度PRTR届<br>出外排出量の推計結果から推計する。                                                                              |
|               | スタート時排出・DBL・HSL    | 同上                                                                                                                                   |
|               | タイヤブレーキ摩耗          | (算出しない)                                                                                                                              |
|               | 船舶                 |                                                                                                                                      |
|               | 停泊中                | (修正なし)                                                                                                                               |
|               | 航行中                | 東京都分に同じ                                                                                                                              |
|               | タグボート              | 東京都分に同じ                                                                                                                              |
|               | 航空機                | (修正なし)                                                                                                                               |
|               | 建設機械等              |                                                                                                                                      |
|               | 建設機械               | 平成 20 年度PRTR届出外排出量の推計方法を用いて発生<br>源種別/地域別に補正する。                                                                                       |
|               | 産業機械               | 同上                                                                                                                                   |
|               | 農業機械               | 同上                                                                                                                                   |
|               | 鉄道                 | 東京都分に同じ                                                                                                                              |
|               | タバコ                | 同上                                                                                                                                   |
|               | 調理                 | 同上                                                                                                                                   |
|               | VOC 発生施設           | 環境省 VOC インベントリ検討会報告 H20 に差換える。VOC の発生源種類別に集計。                                                                                        |
|               | 民生 VOC             | H17~19東京都分実績をH20に年次補正し、地域別に世帯<br>数比等で配分して追加する。空間・時間配分が必要。VOC<br>の発生源種類別に集計する。                                                        |
|               | 植物起源               | 東京都分に同じ                                                                                                                              |
|               | アンモニア発生源           | 東京都分に同じ                                                                                                                              |
|               | 火山 浅間山             | 東京都分に同じ                                                                                                                              |

表 5-1 平成 20 年度関東地方 6 県発生源データの修正方針
|         | <u>汚</u> 染物質<br>発生源種類 | SOx       | NOx     | РМ     | 粉じん   | HCl   | тнс     | NMVOC   | $\rm NH_3$ | $\mathrm{PM}_{2.5}$ |
|---------|-----------------------|-----------|---------|--------|-------|-------|---------|---------|------------|---------------------|
| 関東合計    | 大規模固定煙源               | 72,929    | 136,073 | 6,357  |       | 1,114 |         |         | 1,033      | 4,320               |
| (古古邦な   | 中小事業所                 | 1,975     | 7,529   | 776    |       |       | 2,899   | 1,322   |            | 409                 |
| (東京郁を   | 小型焼却炉                 | 59        | 217     | 207    |       | 74    | 715     | 140     |            | 143                 |
| 示く)     | DXN対象                 | 33        | 150     | 55     |       | 18    | 396     | 78      |            | 38                  |
|         | DXN対象外                | 26        | 67      | 152    |       | 56    | 319     | 63      |            | 105                 |
|         | 調理(飲食店)               |           |         | 76     |       |       |         |         |            | 50                  |
|         | 粉じん発生施設               |           |         |        | 4,496 |       |         |         |            | 13                  |
|         | 野焼き                   | 37        | 279     | 1,506  |       |       | 660     | 595     | 120        | 961                 |
|         | 建設機械等                 | 24        | 45,180  | 1,895  |       |       | 6,099   | 4,875   |            | 1,895               |
|         | VOC発生施設               |           |         |        |       |       | 284,717 | 284,717 |            |                     |
|         | 家庭用燃焼機器               | 367       | 15,575  | 1,045  |       |       |         |         |            | 805                 |
|         | 調理(家庭)                |           |         | 915    |       |       |         |         |            | 630                 |
|         | たばこ                   | 12        | 180     | 1,026  |       |       | 985     | 889     |            | 685                 |
|         | 生活用品                  |           |         |        |       |       | 48,003  | 48,003  |            |                     |
|         | 自動車(4輪・2輪)            | 240       | 130,643 | 4,527  | 3,164 |       | 67,395  | 58,338  | 3,404      | 5,071               |
|         | 船舶                    | 24,133    | 41,797  | 2,994  |       |       | 1,844   | 1,737   |            | 2,994               |
|         | 停泊時                   | 10,027    | 14,695  | 1,199  |       |       | 799     | 752     |            |                     |
|         | 航行時                   | 13,907    | 25,747  | 1,767  |       |       | 992     | 934     |            |                     |
|         | タグボート                 | 199       | 1,355   | 29     |       |       | 54      | 51      |            |                     |
|         | 航空機                   | 41        | 7,254   | 356    |       |       | 2,015   | 1,822   |            | 318                 |
|         | 鉄道                    |           |         | 489    |       |       |         |         |            | 223                 |
|         | アンモニア発生源              |           |         |        |       |       |         |         | 81,960     |                     |
|         | 農業                    |           |         |        |       |       |         |         | 48,521     |                     |
|         | 人・ペット                 |           |         |        |       |       |         |         | 29,796     |                     |
|         | その他施設                 |           |         |        |       |       |         |         | 3,643      |                     |
| 合計      |                       | 99,819    | 384,727 | 22,169 | 7,660 | 1,188 | 415,334 | 402,438 | 86,517     | 18,517              |
| 外洋航路    |                       | 40,890    | 72,816  | 5,211  |       |       | 2,428   | 2,287   |            | 5,211               |
| 火山      |                       | 1,208,514 |         |        |       |       |         |         |            |                     |
| 植物NMVOC | 2                     |           |         |        |       |       | 227,059 | 227,059 |            |                     |

表 5-2 現況発生源別排出量(H20 年度 関東1都6県)(t/年)

| 網掛け部分は、モデルの入力に用いていない。

## (4) 単純将来(平成28年度)の排出量

単純将来の東京都及び関東6県の発生源別排出量は表6に示すとおりである。この排 出量を使用して平成28年度の濃度予測シミュレーションを行った。

|               | 汚染物質<br>発生源種類      |                  | SOx       | NOx     | PM     | 粉じん   | HCl   | THC     | NMVOC   | $NH_3$           | $PM_{2.5}$ |
|---------------|--------------------|------------------|-----------|---------|--------|-------|-------|---------|---------|------------------|------------|
| 吉士物           | 光生源相<br>土田措臣       | 1字価値             | 0.110     | 0.040   | 050    |       | 0.05  |         |         |                  | 100        |
| <b></b> 宋 「 都 | 八 况 侯 臣<br>由 小 重 当 | 国化理你             | 2,119     | 8,049   | 258    |       | 285   | 9.019   | 1 974   | 39               | 192        |
|               | 中小中未               | 初古ガフ             | 20        | 3,277   | 199    |       |       | 3,013   | 1,374   |                  | 131        |
|               |                    | I PC             | 0         | 1,957   | 120    |       |       | 2,201   | 1,004   |                  | 19         |
|               |                    | 灯油               | 20        | 719     | 84     |       |       | 86      | 204     |                  | 44         |
|               | 小型焼去               | 炉                | 4         | 16      | 12     |       | 4     | 49      | 10      |                  | 8          |
|               | •                  | DXN対象            | 3         | 14      | 7      |       | 3     | 36      | 7       |                  | 5          |
|               |                    | DXN対象外           | 1         | 2       | 5      |       | 1     | 13      | 3       |                  | 3          |
|               | 調理(創               | 次食店)             | -         | _       | 23     |       |       |         |         |                  | 15         |
|               | 粉じん発               | <sup>8</sup> 生施設 |           |         |        | 107   |       |         |         |                  | 0          |
|               | 野焼き                |                  | 0.1       | 1       | 4      |       |       | 3       | 3       | 0.3              | 2          |
|               | 建設機械               | <b>戎等</b>        | 0         | 2.690   | 117    |       |       | 387     | 284     |                  | 117        |
|               |                    | 建設機械             | 0         | 1,810   | 84     |       |       | 161     | 152     |                  | 84         |
|               |                    | 産業機械             | 0         | 865     | 32     |       |       | 224     | 131     |                  | 32         |
|               |                    | 農業機械             | 0         | 15      | 1      |       |       | 2       | 2       |                  | 1          |
|               | VOC発生;             | 施設               |           |         |        |       |       | 65,772  | 65,772  |                  |            |
|               | 家庭用燃               | *焼機器             | 77        | 6,056   | 376    |       |       |         |         |                  | 290        |
|               |                    | 都市ガス             | 0         | 3,399   | 31     |       |       |         |         |                  | 24         |
|               |                    | LPG              | 0         | 584     | 3      |       |       |         |         |                  | 2          |
|               |                    | 灯油               | 77        | 2,073   | 343    |       |       |         |         |                  | 264        |
|               | 調理(家               | え庭)              |           |         | 292    |       |       |         |         |                  | 201        |
|               | たばこ                |                  | 3         | 44      | 250    |       |       | 241     | 217     |                  | 167        |
|               | 生活用品               |                  |           |         |        |       |       | 12,818  | 12,818  |                  |            |
|               | 自動車                | (4輪・2輪)          | 50        | 12,927  | 137    | 1,186 |       | 7,039   | 6,544   | 731              | 341        |
|               |                    | 4輪暖機後            | 43        | 9,198   | 94     |       |       | 898     | 905     |                  | 94         |
|               |                    | 2輪暖気後            | 1         | 339     |        |       |       | 429     | 533     |                  |            |
|               |                    | 気温湿度補正           | 1         | 618     | 0      |       |       | 1,417   | -8      |                  | 0          |
|               |                    | スタート時排出          | 5         | 2,772   | 43     |       |       | 22      | 1,221   |                  | 43         |
|               |                    | RL               |           |         |        |       |       | 234     | 192     |                  |            |
|               |                    | DBL              |           |         |        |       |       | 250     | 2,614   |                  |            |
|               |                    | HSL              |           |         |        |       |       | 0       | 1,087   |                  |            |
|               |                    | タイヤ・ブレーキ粉じん      |           |         |        | 1,186 |       |         |         |                  | 204        |
|               | 船舶                 |                  | 6,423     | 9,781   | 801    |       |       | 447     | 421     |                  | 801        |
|               |                    | 停泊時              | 2,040     | 2,459   | 237    |       |       | 171     | 149     |                  | 237        |
|               |                    | 航行時              | 4,357     | 7,213   | 560    |       |       | 300     | 261     |                  | 560        |
|               |                    | タグボート            | 26        | 109     | 4      |       |       | 11      | 10      |                  | 4          |
|               | 航空機                |                  | 35        | 5,870   | 211    |       |       | 1,357   | 1,227   |                  | 188        |
|               | 鉄道                 |                  |           |         | 159    |       |       |         |         |                  | 72         |
|               | アンモニ               | = ア発生源           |           |         |        |       |       |         |         | 5,317            |            |
|               |                    | 農業               |           |         |        |       |       |         |         | 297              |            |
|               |                    | 人・ベット            | -         |         |        |       |       |         |         | 4,809            |            |
|               |                    | その他施設            |           |         |        |       |       |         |         | 212              |            |
| 合計            |                    |                  | 8,732     | 48,711  | 2,889  | 1,293 | 289   | 91,125  | 88,669  | 6,087            | 2,526      |
| 関東合計          | 大規模固               | 固定煙源             | 75,101    | 139,985 | 6,541  |       | 1,143 |         |         | 1,058            | 4,445      |
| (古古如*         | 中小事業               | 美所               | 2,154     | 8,007   | 827    |       |       | 3,013   | 1,374   |                  | 436        |
| (水水印を) 除八)    | 小型焼去               | 炉炉               | 59        | 217     | 207    |       | 74    | 715     | 140     |                  | 143        |
| 1977          |                    | DXN対象            | 33        | 150     | 55     |       | 18    | 396     | 78      |                  | 38         |
|               |                    | DXN対象外           | 26        | 67      | 152    |       | 56    | 319     | 63      |                  | 105        |
|               | 調理(創               | 次食店)             |           |         | 74     |       |       |         |         |                  | 48         |
|               | 粉じん発               | <sup>8</sup> 生施設 |           |         |        | 4,454 |       |         |         |                  | 13         |
|               | 野焼き                | h. dada          | 37        | 279     | 1,506  |       |       | 660     | 596     | 120              | 961        |
|               | 建設機械               | 双等               | 0         | 9,778   | 427    |       |       | 1,492   | 1,168   |                  | 427        |
|               | VOC発生;             | 施設               |           |         |        |       |       | 274,467 | 274,467 |                  |            |
|               | <u>家</u> 庭用燃       | ふ 焼 機 畚          | 376       | 15,786  | 1,059  |       |       | 0       | 0       |                  | 816        |
|               | 調理(家               | え)(た)            |           | 100     | 939    |       |       | 0.50    | 010     |                  | 647        |
|               | にほこ                | 1                | 8         | 123     | 704    |       |       | 676     | 610     |                  | 470        |
|               | 生活用面               | ロ<br>(4齢・9齢)     | 0.11      | 50.155  | 0.50   | 0.050 |       | 48,003  | 48,003  | 0.404            | 1 501      |
|               | 日期単                | (生料冊 * ム甲冊丿      | 241       | 08,155  | 972    | 3,072 |       | 25,834  | 22,747  | 3,404            | 1,501      |
|               | 河口为日               | 估泸吐              | 25,636    | 40,365  | 3,179  |       |       | 1,966   | 1,852   |                  | 3,179      |
|               |                    | 了们时<br>航行時       | 10,566    | 14,000  | 1,260  |       |       | 452     | 1 000   |                  | 1,260      |
|               |                    | 別山1時<br>タガギート    | 14,854    | 24,981  | 1,888  |       |       | 596     | 1,000   |                  | 1,888      |
|               | <u>自古 グロ お</u> 飲   | シンかート            | 216       | 1,334   | 400    |       |       | 25      | 66      |                  | 31         |
|               | AUI 工103<br>鉄道     |                  | 51        | 9,042   | 430    |       |       | 2,402   | 2,226   |                  | 303        |
|               | 外垣<br>アンエー         | ア発生酒             |           |         | 491    |       |       |         |         | 81.000           | 223        |
|               | / / ~ ~ ~          | - / 元工(小)        |           |         |        |       |       |         |         | 01,900<br>40 501 |            |
|               |                    | 辰禾               |           |         |        |       |       |         |         | 40,021           |            |
|               |                    | ス・シア<br>その仲描語    |           |         |        |       |       |         |         | 29,190           |            |
| 스라            |                    | てマノT巴加良          | 109 604   | 981 797 | 17.950 | 7 807 | 1.017 | 250.900 | 959 109 | 3,043            | 19 609     |
| ロロ<br>加達転応    |                    |                  | 45.949    | 201,737 | 11,000 | 1,021 | 1,417 | 000,400 | 000,100 | 00,041           | 10,000     |
| アト任机路         |                    |                  | 45,548    | 73,107  | 5,779  |       |       | 2,693   | 2,537   |                  | 0,779      |
| バ田            | ,                  |                  | 1,208,514 |         |        |       |       | 00-01-  | 005.000 |                  |            |
| ↑LLANINMVOC   | /                  |                  |           | 1       | 1      | 1     |       | 227,059 | 227,059 |                  |            |

表 6 単純将来(H28 年度)発生源別排出量(t/年)

:網掛け部分は、モデルの入力に用いていない。

### 4 PM<sub>2.5</sub> シミュレーション(モデル併用の検討)

### (1) 現況再現結果の比較

解析型モデルと数値型モデルの予測結果を比較する場合、特に解析型モデルには大気 中での変質が起こらない一次粒子の再現性に期待するところが大きいので、代表的な一 次粒子である EC の予測結果と実測値の散布図を示し比較する。解析型モデルでは平成 20 年度に特別調査を行った一般環境測定局9地点、自動車排出ガス測定局8地点につい て、数値型モデルでは一般環境測定局9地点について、それぞれ濃度実測値と計算値と を比較した。解析型モデルの結果を図3に、数値型モデルの結果を図4に示した。





図3 EC 濃度散布図(解析型モデル)

図4 EC 濃度散布図(数値型モデル)

## (2) 評価

ー次粒子である EC 濃度の実測値と計算値の散布図を両モデルについて比較すると、どちらのモデルの予測結果も実測濃度に対して過小評価であった。その程度は同程度であり、化学的に不活性な EC について、特に解析型の結果が優れていると判断される程の違いはなかった。解析型モデルは二次生成物質の濃度予測には適していないことを考慮すると、両モデルを併用せず一次排出物質及び二次生成物質とも数値型モデルだけを使い PM<sub>25</sub>濃度予測することを確認した。

5 数値型モデルによるシミュレーション

#### (1) 数値型モデルの構成

数値型モデルの構成は、表7及び図5に示すとおりである。

#### 表7 数値型モデルの構成概要

気象モデル: MM5(The fifth-generation Penn State/NCAR Mesoscale Model) V. 3. 7. 4 大気質モデル: CMAQ (Community Multi-scale Air Quality) V. 4. 6 拡散モデル: ACM2 化学反応モデル: SAPRC-99 粒子化モデル: Aero4 発生源データ 項目: NO x 、SO<sub>2</sub>、NH<sub>3</sub>、VOC、PM、HC1、CO 発生源種類: 大規模固定、自動車、船舶(港湾関連、外洋航路)、航空機、 民生、粉じん発生施設、小型焼却炉、建設機械等、 VOC 発生施設、民生 VOC、野焼き、鉄道、タバコ、調理、 NH<sub>3</sub>発生源(農業、人・ペット、その他施設)、火山、植物 データ出典:本調査、東京都発生源調査、JATOP\*、EAGrid2000-Japan\*

\*作成者の許可を得て使用した。





#### (2) 計算対象領域、境界条件及び初期条件

シミュレーションの対象領域は、図6に示すとおりである。約15km メッシュの中部日 本域と、約5km メッシュの関東域でシミュレーションを行う。

中部日本域の境界条件は、国立環境研究所の広域モデルによる計算値データの提供を 受けて設定する。関東域の境界条件は、中部日本域のシミュレーション結果から与える (ネスティング)。シミュレーションは計算対象日の48時間前から助走計算を行い、対 象日の初期条件を生成させる。助走計算の初期条件は、国立環境研究所の広域モデルに よる計算値データの提供を受けて使用する。



図 6 対象領域等

#### (3) 中部日本域(関東地域外)発生源の排出量

一都六県外(中部日本域内)の現況排出量については、EAGrid200-Japan を年度補 正したものを使用した。排出量は、表8に示すとおりである。一都六県外(中部日本域 内)の将来発生源は、この排出量に表9に示す伸び率を乗じて算定した。結果は、表10 に示すとおりである。この発生源は、単純将来及び対策将来のシミュレーションに使用 した。

|  | 表 8 | ー都六県外の現況 | (H20 年度) | 発生源別排出量 | (t/年 |
|--|-----|----------|----------|---------|------|
|--|-----|----------|----------|---------|------|

| 発生源種類         | CO     | HCL | NH3   | NMVOC  | NOX    | PM10  | PM25  | SOX    |
|---------------|--------|-----|-------|--------|--------|-------|-------|--------|
| 大規模固定源        | 0      | 888 | 0     | 0      | 220991 | 14912 | 11344 | 140820 |
| 自動車排気         | 889531 | 0   | 3160  | 51426  | 111746 | 4845  | 4845  | 166    |
| 航空機           | 0      | 0   | 0     | 0      | 0      | 0     | Q     | 0      |
| 自動車蒸発         | 0      | 0   | 0     | 12484  | 0      | 0     | 0     | 0      |
| 家庭·業務施設燃燒施設   | 0      | 0   | 0     | 0      | 12060  | 974   | 678   | 3016   |
| 建設・産業・農業機械    | 0      | 0   | 0     | 6261   | 54852  | 2224  | 2224  | 38     |
| 小規模燒却炉        | 0      | 0   | 0     | 1552   | 320    | 665   | 404   | 127    |
| 農業廃棄物野焼き      | 0      | 0   | 480   | 1585   | 691    | 1645  | 1490  | 112    |
| 燃料蒸発          | 0      | O   | 0     | 29389  | 0      | 0     | 0     | 0      |
| 塗装            | 0      | 0   | 0     | 143266 | 0      | 0     | 0     | 0      |
| 印刷            | 0      | 0   | 0     | 22907  | 0      | 0     | 0     | 0      |
| その他の固定蒸発      | 0      | Ö   | 0     | 45863  | 0      | 0     | 0     | 0      |
| 植物起源          | 0      | Ö   | 0     | 348240 | 0      | 0     | 0     | 0      |
| 自動車タイヤ磨耗      | 0      | Ø   | 0     | 0      | 0      | 2193  | 472   | 0      |
| 民生 VOC        | Ũ      | 0   | 0     | 22533  | 0      | 0     | 0     | 0      |
| アンモニア発生源農業    | Ū.     | Ō   | 52641 | 0      | 0      | 0     | 0     | 0      |
| アンモニア発生源人ペット  | 0      | Ō   | 29703 | 0      | 0      | 0     | 0     | 0      |
| アンモニア発生源その他施設 | 0      | 0   | 9901  | 0      | 0      | 0     | 0     | 0      |
| 合計            | 889531 | 888 | 95886 | 685506 | 400660 | 27457 | 21458 | 144278 |

| 発生源           | 現況排出量からの伸び率              | NOX   | SOX   | NMHC  | PM    | NH3   |
|---------------|--------------------------|-------|-------|-------|-------|-------|
| 大規模固定煙源       | 千葉、栃木、群馬、茨城の大規模固定源伸び率    | 1.031 | 1.031 | 1.031 | 1.031 |       |
| 自動車排気・蒸発      | 北関東三県の物質別排出量の伸び率         | 0.445 | 1.000 | 0.383 | 0.215 | 1.000 |
| 自動車タイヤ磨耗      | 現代企画社東京都推定伸び率            |       |       | -     | 0.971 | _     |
| 民生家庭          | 千葉、栃木、群馬、茨城の民生家庭伸び率      | 1.006 | 1.006 | 1.006 | 1.006 | -     |
| 民生業務          | 千葉、栃木、群馬、茨城の民生業務伸び率      | 1.062 | 1.062 | 1.062 | 1.062 | -     |
| 小型燒却炉         | スライド                     | 1.000 | 1.000 | 1.000 | 1.000 | _     |
| 建設機械等         | 北関東三県の物質別排出量の伸び率         | 0.199 |       | 0.192 | 0.226 | -     |
| 炭化水素発生施設      | 関東全体に適用した VOC 伸び率(0.964) |       | -     | 0.964 | -     | -     |
| 民生 VOC        | スライド                     |       | -     | 1.000 | 1.4   |       |
| 野焼き           | スライド                     | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| アンモニア発生源農業    | スライド                     |       |       |       | 1000  | 1.000 |
| アンモニア発生源人ペット  | スライド                     | -     | -     | -     | -     | 1.000 |
| アンモニア発生源その他施設 | スライド                     |       | -     | -     | _     | 1,000 |

表9 一都六県外排出量の伸び率(H20→H28)設定

表 10 一都六県外の将来(H28 年度)発生源別排出量(t/年)

| 発生源種類         | CO     | HCL | NH3   | NMVDC  | NOX    | PM10  | PM25  | SOX    |
|---------------|--------|-----|-------|--------|--------|-------|-------|--------|
| 大規模固定源        | 0      | 915 | 0     | 0      | 227777 | 15370 | 11693 | 145144 |
| 自動車排気         | 889531 | 0   | 3160  | 19713  | 49744  | 1041  | 1041  | 166    |
| 航空機           | 0      | 0   | 0     | 0      | 0      | 0     | 0     | 0      |
| 自動車蒸発         | 0      | 0   | 0     | 4786   | 0      | 0     | 0     | 0      |
| 家庭·業務施設燃焼施設   | 0      | 0   | 0     | 0      | 12523  | 1011  | 704   | 3132   |
| 建設・産業・農業機械    | 0      | 0   | 0     | 1200   | 10905  | 503   | 503   | 0      |
| 小規模燒却炉        | 0      | 0   | 0     | 1552   | 320    | 665   | 404   | 127    |
| 農業廃棄物野焼き      | 0      | 0   | 480   | 1585   | 691    | 1645  | 1490  | 112    |
| 燃料蒸発          | 0      | 0   | 0     | 28331  | 0      | 0     | Q     | 0      |
| 塗装            | 0      | 0   | 0     | 138110 | 0      | 0     | 0     | 0      |
| 印刷            | 0      | 0   | 0     | 22083  | 0      | 0     | 0     | 0      |
| その他の固定蒸発      | 0      | 0   | 0     | 44212  | 0      | 0     | 0     | 0      |
| 植物起源          | 0      | 0   | 0     | 348240 | 0      | 0     | 0     | 0      |
| 自動車タイヤ磨耗      | 0      | 0   | 0     | 0      | 0      | 2130  | 459   | 0      |
| 民生 VDC        | 0      | 0   | 0     | 22533  | 0      | 0     | 0     | 0      |
| アンモニア発生源農業    | 0      | 0   | 52641 | 0      | 0      | 0     | 0     | 0      |
| アンモニア発生源人ペット  | 0      | Ø   | 29703 | 0      | 0      | 0     | 0     | 0      |
| アンモニア発生源その他施設 | 0      | 0   | 9901  | 0      | 0      | 0     | 0     | 0      |
| 合計            | 889531 | 915 | 95886 | 632346 | 301960 | 22364 | 16293 | 148680 |

#### (4) 対象年度·期間等

評価対象年度及び計算対象期間等は表 11 に示すとおりである。

### 表 11 対象年度及び計算対象期間等

現況年度:平成20年度(2008年度) 将来年度:平成28年度(2016年度) 対象期間:東京都・特別観測期間(4季×14日) (春:5月18日~6月1日、夏:7月28日~8月10日) (秋:11月4日~11月17日、夏:2月2日~2月15日) 評価地点:特別観測が実施された都内一般局等

#### (5) 現況再現結果

成分別の実測濃度と計算濃度の相関関係は、図7に示すとおりである。全体的に計算 値が過小に出る傾向があり、特に ORG\_TOT (有機エアロゾル)でその傾向が著しい。それ に対して、NITR (硝酸イオン)は過大傾向である。



#### 図7 PM<sub>2</sub>,成分別・実測値と計算値の相関関係

現況年平均·都内特別観測地点(一般局)平均

季節別・成分別の実測濃度と計算濃度を比較すると、図8に示すようになっている。 年平均値でみると、計算値は、PM2.5 全体では実測濃度の 60%強、FINE(金属などの一次 粒子)を除く成分計では実測濃度の75%程度となっている。計算値のFINEには、水分が 計算されず、海塩・土壌の計算が完全でない点に注意が必要である。FINEを除く各成分 については、NITR(硝酸イオン)\*に過大評価傾向がみとめられるものの、他の成分間のバ ランスや季節変化の特徴が再現されており、近年の既往のシミュレーション事例\*\*と同 程度の再現精度が得られたと考えられる。

\* 本来は粒子だけではなくガスを含めた全硝酸と比較すべきである。

\*\* 茶谷ら:3次元大気シミュレーションによる2005年度日本三大都市圏PM<sub>2.5</sub>濃度に対する国内発生源・越境輸送の感度解析型,大気環境学会誌,46(2011)

森野ら:大気質モデルの相互比較実験による 0<sub>3</sub>, PM<sub>2.5</sub>予測性能の評価-2007 年夏季、関東の事例,大気環境学 会誌,45 (2010)



図 8 PM<sub>2.5</sub>季節別・成分別・実測値と計算値の比較 都内特別観測地点(一般局)平均

PM<sub>2.5</sub> 及び各種大気汚染物質等の関東域における四季及び年平均濃度分布の再現況況 は、図 9-1~図 9-5 に示すとおりである。NOx、SO<sub>2</sub>などの一次汚染物質の濃度レベル 及び分布傾向は、ほぼ適切に再現されていることがわかる。Ox は過大評価傾向であり、 SPM は過小評価傾向である。PM<sub>2.5</sub> は都内の測定地点に限られるが、過小評価である。





図 9-2 季節別・項目別濃度分布図(現況再現結果:夏) 〇印は観測値



〇印は観測値



図 9-4 季別・項目別濃度分布図(現況再現結果:冬) 〇印は観測値



#### (6) 発生源寄与推定

都内の大気環境中 PM2.5 における発生源別の寄与濃度を推定するために、関東地方の8種類の発生源(自動車、船舶、大規模固定発生源、民生(業務用・家庭用)、建設機械、VOC 発生施設、その他の人為発生源、アンモニア発生源及び自然発生源)の排出量に対するゼロアウト感度計算を行った。発生源削除の対象としたのは、関東地方全域である。ゼロアウト計算結果の例を図 10-1~10-4 に示した。







図 10-3 発生源別・季節別・成分別ゼロアウト感度(大規模固定発生源)



ゼロアウト・シミュレーションの結果をもとに、発生源別寄与濃度(率)の推定を試 みた。それに先立ち、自動車、船舶、大規模固定発生源、民生(業務用・家庭用)など の主な人為発生源に対して段階的に(20%、50%)発生源強度をカットする感度解析型も 行った。図11はその結果の例である。年平均濃度は、主な人為発生源の削減率に対して は、ほぼ線形に各成分の濃度が低下することが確認された。そこで、これらの発生源種 類(関東地方)について、現況とゼロアウト・ケースの濃度差が、各発生源の寄与濃度 を近似的に表していると考えることとする(ゼロアウト法による寄与濃度の推定)。また、 現況濃度から感度計算の対象とした8種の寄与濃度の推定値の総和を差し引いた濃度 (残差)を、「関東外地域からの寄与」と考えることとする。ただし、この残差の部分に

は、後述する「非線形効果の補正項」も含まれる点に注意が必要である。



図 11 関東域の自動車発生源強度の定率削減に対する PM<sub>25</sub>濃度の応答(年平均)

このようなゼロアウト法による寄与濃度の推定については、以下のような点に留意する 必要がある。まず、PM<sub>2.5</sub>には、二次粒子等、原因物質の排出量と濃度が非線形の関係にあ る成分が多く存在するため、この方法では基本的に正確な発生源寄与の評価をすることは できない。この方法で評価できるのは、発生量の変化(削減)に対する感度であり、あく まで寄与濃度(寄与率)に類似する「目安の量」と考えるべきである。

また、人為的にコントロールできない「アンモニア発生源及び自然発生源」の削除に対 する応答は比較的大きいため、図 11 の例(自動車)のような排出量と濃度間の線形性は十 分に担保されず、寄与濃度が過大に評価されている可能性がある。さらに、すべての発生 源種類の寄与濃度をゼロアウト法で推定した場合、非線形効果のために寄与濃度の総和は、 通常現況濃度と一致しない。これは、近年の CMAQ を用いた濃度予測報告例(茶谷ら:3次元 大気シミュレーションによる 2005 年度日本三大都市圏 PM<sub>2.5</sub>濃度に対する国内発生源・越境輸送の感度 解析型,大気環境学会誌,46,2011)等においても同様な結果が報告されている。本解析型で は、その「不一致」分を残差のカテゴリー(図 13 の関東以外の寄与・非線形効果の補正) にしわ寄せしているので、その点に特に注意が必要である。

関東地方の 8 種類の発生源(自動車、船舶、大規模固定発生源、民生、建設機械、VOC 発生施設、その他の人為発生源、アンモニア発生源及び自然発生源)のゼロアウトに対す る成分別濃度の応答は、表 11 及び図 12 に示すとおりである。関東地方の人為発生源に対 しては、自動車の応答が最大で(2.09  $\mu$ g/m<sup>3</sup>)、次いで船舶(1.03  $\mu$ g/m<sup>3</sup>)、大規模固定(1.01  $\mu$ g/m<sup>3</sup>)、その他人為起源(0.80  $\mu$ g/m<sup>3</sup>)である。

人為発生源のうち VOC 発生施設の排出量をゼロとした場合の濃度低減が非常に小さく、排出 量から考えると寄与の評価が過小になっていると思われる。現況の CMAQ モデルによる有機エア ロゾル(OA:ORG\_TOT)の濃度予測報告例は同様な傾向にあるため、OA の寄与推定にはシミュ レーション以外の情報も利用することが必要である。また、人為的にコントロールできないアンモニ ア発生源及び自然発生源の応答が非常に大きく表れているのは、排出量と濃度の線形性がなく なり、寄与濃度が過大に評価された可能性がある。

※ 排出量と濃度が線形とは、排出量の増減に比例して濃度が増減する関係をいい反応性の低い一次排出物質で成り立つ。二 次生成物質では、原因物質の排出量を低減した場合、低減割合から予測と異なる濃度低下となる関係(非線形)ことがある。

### 表 12 関東の発生源別ゼロアウト計算に対する成分別濃度の応答

2008年度・特別観測期間(四季)平均・都内特別観測地点(一般局)平均

|                   |       | 補正前・µg/m <sup>3</sup> |       |          |       |       |          |          |          |  |  |  |  |
|-------------------|-------|-----------------------|-------|----------|-------|-------|----------|----------|----------|--|--|--|--|
|                   | 現況    | 自動車out                | 船舶out | 大規模固定out | 民生out | 建機out | その他人為out | VOC施設out | アンモ自然out |  |  |  |  |
| PM <sub>2.5</sub> | 12.42 | 10.33                 | 11.39 | 11.41    | 11.84 | 11.80 | 11.62    | 12.29    | 8.03     |  |  |  |  |
| EC                | 1.00  | 0.61                  | 0.84  | 0.96     | 0.94  | 0.73  | 0.96     | 1.00     | 1.01     |  |  |  |  |
| ORG_TOT           | 2.45  | 2.21                  | 2.22  | 2.39     | 2.15  | 2.28  | 2.07     | 2.37     | 1.73     |  |  |  |  |
| NITR              | 3.21  | 2.32                  | 2.94  | 2.84     | 3.16  | 3.06  | 3.09     | 3.16     | 0.71     |  |  |  |  |
| SULF              | 2.88  | 2.90                  | 2.71  | 2.72     | 2.82  | 2.89  | 2.87     | 2.89     | 2.66     |  |  |  |  |
| NH <sub>4</sub>   | 1.97  | 1.72                  | 1.83  | 1.81     | 1.94  | 1.93  | 1.93     | 1.96     | 1.00     |  |  |  |  |
| 成分計               | 11.51 | 9.76                  | 10.55 | 10.72    | 11.00 | 10.90 | 10.92    | 11.38    | 7.11     |  |  |  |  |
| FINE              | 0.91  | 0.58                  | 0.85  | 0.69     | 0.84  | 0.91  | 0.70     | 0.91     | 0.92     |  |  |  |  |

成分計=EC+ORG\_TOT+NITR+SULF+NH<sub>4</sub> FINE=PM<sub>9.5</sub>-成分計



関東地方の発生源outに対する都内PM<sub>2.5</sub>の応答(CMAQ)

ゼロアウト計算結果に基づく発生源別寄与濃度の推定結果は、表 13 に示す通りである。 また、この結果に基づいて作成した発生源別寄与率は、図 13 に示す通りである。ここで、 感度計算を行わなかった発生源カテゴリーである「関東以外の寄与・非線形効果の補正」 については、現況濃度から自動車からアンモニア発生施設・自然までの寄与の総和をさ し引いた残差として算定している。そのためこのカテゴリーには、既に述べたように、 非線形効果の補正項も含まれている。

図7上段右端の散布図から有機エアロゾル(ORG\_TOT)の計算濃度は著しく過小評価傾向となっており、そのため表18のORG\_TOTの補正係数は2を超える値になっている。これと同様の傾向は、近年のCMAQを用いた環境濃度シミュレーションの報告\*にも見られる。この傾向は、特にVOC発生施設の寄与が過小に評価されていると考えられるので、

図 12 関東の発生源別ゼロアウト計算に対する成分別濃度の応答 2008 年度・特別観測期間(四季)平均・都内特別観測地点(一般局)平均

有機エアロゾルの寄与濃度推定には、シミュレーション以外の情報も利用することが必要と考えられる。

- \*茶谷ら:3次元大気シミュレーションによる2005年度日本三大都市圏 PM<sub>2.5</sub>濃度に対する国内発生源・越境輸送の 感度解析型,大気環境学会誌,46 (2011)
  - 森野ら:大気質モデルの相互比較実験による 03, PM<sub>2.5</sub>予測性能の評価-2007 年夏季、関東の事例,大気環境学会 誌,45 (2010)

#### 表13 ゼロアウト計算結果に基づく発生源別寄与濃度の推定

2008年度・特別観測期間(四季)平均・都内特別観測地点(一般局)平均

| 補正前・µg/m <sup>3</sup> | 現況    | 自動車out | 船舶out | 大規模固定out | 民生out | 建機out | その他人為out | VOC施設out | アンモ自然out |
|-----------------------|-------|--------|-------|----------|-------|-------|----------|----------|----------|
| PM <sub>2.5</sub>     | 12.42 | 10.33  | 11.39 | 11.41    | 11.84 | 11.80 | 11.62    | 12.29    | 8.03     |
| 現況-outケース             |       | 2.08   | 1.02  | 1.01     | 0.58  | 0.61  | 0.80     | 0.13     | 4.39     |



図 13 ゼロアウト計算結果に基づく発生源別寄与率の推定

2008年度・特別観測期間(四季)平均・都内特別観測地点(一般局)平均

この計算結果から PM<sub>2.5</sub>の成分別に発生源別寄与濃度を推定し、表 14 及び図 14 に示す。 寄与濃度が負になった成分・発生源があるが、特に大きいのは NITR の「関東以外の寄 与・非線形効果の補正」である。この原因は、アンモニア発生源の削除に対する NITR 濃 度減少の応答が過大で、それを補償したため大きくマイナス値となったと考えられる。 この結果をもって削減対策の効果を判断することは不適切であり、取扱いには十分注意 する必要がある。その他、SULF への域外の寄与が大きいことや NITR へのアンモニア発 生源の寄与が大きいことなど、この推定結果は既報の CMAQ 計算結果\*と同様の傾向を示 している。

\*茶谷ら:3次元大気シミュレーションによる2005年度日本三大都市圏PM<sub>2.5</sub>濃度に対する国内発生源・越境輸送の 感度解析型,大気環境学会誌,46,(2011)

### 表14 ゼロアウト計算結果に基づく発生源別・成分別寄与濃度の推定

|         | 自動車   | 船舶   | 大規模<br>固定 | 民生   | 建機    | その他<br>人為 | VOC<br>発生施設 | <ul><li>アンモニア</li><li>発生源、</li><li>自然</li></ul> | 関東以外<br>の寄与、<br>非線形<br>効果の補正 |
|---------|-------|------|-----------|------|-------|-----------|-------------|-------------------------------------------------|------------------------------|
| EC      | 0.38  | 0.15 | 0.03      | 0.05 | 0.26  | 0.04      | 0.00        | -0.01                                           | 0.09                         |
| ORG_TOT | 0.24  | 0.23 | 0.06      | 0.30 | 0.17  | 0.39      | 0.08        | 0.72                                            | 0.26                         |
| NITR    | 0.89  | 0.27 | 0.37      | 0.05 | 0.15  | 0.12      | 0.05        | 2.50                                            | -1.17                        |
| SULF    | -0.01 | 0.18 | 0.17      | 0.07 | -0.01 | 0.01      | -0.01       | 0.23                                            | 2.26                         |
| $NH_4$  | 0.26  | 0.14 | 0.17      | 0.04 | 0.04  | 0.04      | 0.01        | 0.97                                            | 0.30                         |
| FINE    | 0.33  | 0.06 | 0.21      | 0.07 | 0.00  | 0.20      | 0.00        | -0.01                                           | 0.04                         |

2008 年度・特別観測期間(四季)平均・都内特別観測地点(一般局)平均 µg/m<sup>3</sup>





#### 図14 ゼロアウト計算結果に基づく発生源別・成分別寄与濃度の推定

2008年度・特別観測期間(四季)平均・都内特別観測地点(一般局)平均

なお、都内の各種発生源に対しても、同様にゼロアウト感度計算を行った。結果は表 15 ~表 17 及び図 15~図 17 に示すとおりである。これに対して都内の人為発生源は、いずれ も小さく最大の自動車でも 1 µ g/m<sup>3</sup>未満であった。

#### 表 15 都内の発生源別ゼロアウト計算に対する成分別濃度の応答

| $(\mu \text{ g/m}^3)$ | 現況    | 自動車out  | 船舶out | 大規模固<br>定out | 民生out | 建機out | その他人<br>為out | VOC施設<br>out | アンモニア<br>自然out |
|-----------------------|-------|---------|-------|--------------|-------|-------|--------------|--------------|----------------|
| $PM_{2.5}$            | 12.42 | 2 11.62 | 12.17 | 12.36        | 12.07 | 12.11 | 11.97        | 12.38        | 11.21          |
| EC                    | 1.00  | 0.79    | 0.93  | 0.99         | 0.96  | 0.80  | 0.97         | 1.00         | 1.00           |
| ORG_TOT               | 2.45  | 5 2.31  | 2.35  | 2.44         | 2.23  | 2.32  | 2.22         | 2.42         | 2.22           |
| NITR                  | 3.2   | 3.02    | 3.20  | 3.23         | 3.22  | 3.21  | 3.16         | 3.20         | 2.48           |
| SULF                  | 2.88  | 3 2.88  | 2.85  | 2.87         | 2.84  | 2.88  | 2.88         | 2.89         | 2.88           |
| NH <sub>4</sub>       | 1.97  | 7 1.92  | 1.96  | 1.97         | 1.96  | 1.98  | 1.96         | 1.97         | 1.73           |
| 成分計                   | 11.5  | 10.92   | 11.29 | 11.49        | 11.22 | 11.20 | 11.19        | 11.47        | 10.30          |
| FINE                  | 0.9   | 0.70    | 0.88  | 0.87         | 0.86  | 0.91  | 0.78         | 0.91         | 0.91           |

2008年度・特別観測期間(四季)平均・都内特別観測地点(一般局)平均



図 15 都内の発生源別ゼロアウト計算に対する成分別濃度の応答

<sup>2008</sup>年度・特別観測期間(四季)平均・都内特別観測地点(一般局)平均

| $(\mu \text{ g/m}^3)$ | 現況    | 自動車out | 船舶out | 大規模固定<br>out | 民生out | 建機out | その他<br>人為out | VOC施設<br>out | アンモニア・<br>自然out |
|-----------------------|-------|--------|-------|--------------|-------|-------|--------------|--------------|-----------------|
| PM <sub>2.5</sub>     | 12.42 | 11.62  | 12.17 | 12.36        | 12.07 | 12.11 | 11.97        | 12.38        | 11.21           |
| 現況-outケース             |       | 0.80   | 0.25  | 0.06         | 0.34  | 0.31  | 0.44         | 0.04         | 1.21            |





2008年度・特別観測期間(四季)平均・都内特別観測地点(一般局)平均

<sup>2008</sup>年度・特別観測期間(四季)平均・都内特別観測地点(一般局)平均

表 16 ゼロアウト計算結果に基づく都内発生源別寄与濃度の推定

図 16 都内の発生源別ゼロアウト計算結果に基づく発生源別寄与率の推定

## 表 17 ゼロアウト計算結果に基づく都内発生源別・成分別寄与濃度の推定

| $(\mu \text{ g/m}^3)$ | 自動車<br>out | 船舶out | 大規模固定<br>out | 民生out | 建機out | その他<br>人為out | VOC施設<br>out | アンモニア・<br>自然out | 関東以外の<br>寄与・非線型<br>の補正 |
|-----------------------|------------|-------|--------------|-------|-------|--------------|--------------|-----------------|------------------------|
| EC                    | 0.21       | 0.07  | 0.01         | 0.04  | 0.19  | 0.03         | 0.00         | 0.00            | 0.46                   |
| ORG_TOT               | 0.14       | 0.10  | 0.01         | 0.22  | 0.13  | 0.23         | 0.03         | 0.23            | 1.37                   |
| NITR                  | 0.18       | 0.01  | -0.02        | -0.02 | -0.01 | 0.05         | 0.01         | 0.72            | 2.28                   |
| SULF                  | 0.00       | 0.03  | 0.02         | 0.04  | 0.00  | 0.00         | 0.00         | 0.01            | 2.78                   |
| $NH_4$                | 0.06       | 0.01  | 0.00         | 0.01  | 0.00  | 0.02         | 0.00         | 0.25            | 1.63                   |
| FINE                  | 0.21       | 0.03  | 0.04         | 0.05  | 0.00  | 0.13         | 0.00         | 0.00            | 0.46                   |

2008年度・特別観測期間(四季)平均・都内特別観測地点(一般局)平均



# 図 17 都内の発生源別ゼロアウト計算結果に基づく発生源別・成分別寄与濃度の推定 2008 年度・特別観測期間(四季)平均・都内特別観測地点(一般局)平均

### (7) 数値モデルの計算結果の補正

CMAQ による都内の PM<sub>2.5</sub> 濃度計算結果と実測濃度(平成 20 年度・四季平均)は、既に図 8 に比較して示した。

実測濃度に対して計算濃度が過小であることは既に述べたが、数値モデルの計算結果を将来 予測や対策効果などの定量的な検討に使用するには、実測濃度に基づく補正が必要と考え られる。ここでは、現況の実測濃度と計算濃度の比率に基づく成分ごとの補正係数(CF) を用いることとする。

補正手順の詳細は、表 18 のコメントに示すとおりである。実測濃度の FINE 部分には、 数値モデルの FINE 部分で考慮されている(排出量が与えられている)金属成分等の他に、 計算されない水分や測定器の分級性能上捕集される粗大粒子(ナトリウム、土、砂、塩素 など)が含まれると考えられるため、計算値にはこれも加算する必要がある。

ここでは、実測濃度(元素状炭素(EC),有機炭素(ORG\_TOT),硝酸イオン(NITR),硫酸イオン(SULF),アンモニウムイオン(NH<sub>4</sub>))については計算濃度との比率に基づく成分ごとの補正係数(CF)を用いることとし、単一成分ではない実測濃度のFINE(その他の粒子)部分は、数値モデルで計算可能な成分を分離してCFを求め補正した。そこで、まず実測濃度のFINE部分をCMAQの計算に対応する部分とそれ以外の成分及び水分に分配する。それ以外の成分のうち、海塩及び土壌については実測値から平均濃度として一定値を与えることとする。水分については、まず平成20年度では湿度50%\*で秤量したためこれを湿度35%に補正し、次に湿度35%条件下で無機粒子成分(SULF+NITR+NH<sub>4</sub>)と平衡にある水分量を求める。湿度の補正は両湿度での測定値から質量の5%を減じて35%での秤量値とし、平衡にある水分量は

(SULF+NITR+NH<sub>4</sub>)の年平均濃度を E-AIM モデル(<u>http://www.aim.env.uea.ac.uk/aim/aim.php/</u>) に入力して求めた。これにより、実測濃度の FINE 部分を CMAQ で計算できない成分(水分+ (海塩・土壌))と CMAQ で計算可能な部分に分ける。

CMAQ による現況計算結果の各成分濃度に CF を乗じ、水分を加算すると、結果は現況実 測濃度と一致する。将来計算結果や削減シミュレーション結果も、これらの CF と水分率を 適用して補正することとする。

\* 平成 20 年度の環境調査のろ紙秤量は測定法の制定前であったため湿度 50%で行った。

## 表18 2008 年度(四季)・都内特別観測地点(一般局)平均濃度の補正係数

|                           | $\mu~{ m g/m^3}$ | $\mu~{ m g/m^3}$ |          | $\mu { m g/m^3}$ |
|---------------------------|------------------|------------------|----------|------------------|
|                           | 50%秤量            |                  | 補正係数CF   | 補正後              |
|                           | obs              | CMAQ             | obs/CMAQ | CMAQ             |
| PM <sub>2.5</sub>         | 20.08            | 12.42            |          | 20.08            |
| EC                        | 1.47             | 1.00             | 1.48     | 1.47             |
| ORG_TOT                   | 5.11             | 2.45             | 2.09     | 5.11             |
| NITR                      | 2.09             | 3.21             | 0.65     | 2.09             |
| SULF                      | 4.51             | 2.88             | 1.56     | 4.51             |
| $NH_4$                    | 2.13             | 1.97             | 1.08     | 2.13             |
| 成分計                       | 15.32            | 11.51            |          | 15.32            |
| FINE                      | 4.76             |                  |          |                  |
|                           |                  | 0.91             |          |                  |
| Other                     | 1.58             | 0.91             | 1.74     | 1.58             |
| 海塩·土壤                     | 0.74             |                  |          | 0.74             |
| 平衡水分                      | 1.44             |                  |          | 1.44             |
| 水分(湿度補正)                  | 1.00             |                  |          | 1.00             |
| FINE+                     |                  |                  |          | 4.76             |
|                           |                  |                  |          |                  |
| PM <sub>2.5</sub> (35%秤量) | 19.07            |                  |          | 19.07            |

成分計=EC+ORG\_TOT+NITR+SULF+NH4

FINE=PM<sub>2.5</sub>-成分計

- \* CMAQのFINE=Other Other:Na、土、砂、Cl、…
- \* obsのFINE=Other+水分+海塩・土壌

○ 補正の準備

| 1. | obsのFINEをOtherと海塩・土壌、水分に分ける       |        |     |      |   |
|----|-----------------------------------|--------|-----|------|---|
|    | 海塩と土壌はCMBパターン1の年平均値を使う            | 0.23   | +   | 0.51 | - |
|    | E-AIMで成分濃度(年平均値)に対する平衡水分量を算出す     | る      |     |      |   |
|    | 湿度補正分の水分のPM2.5に対する比率は、実験値より→      |        |     |      |   |
|    | (obsのFINE)から(海塩・土壌+平衡水分+湿度補正)を差し引 | いてOthe | rを算 | 出する  |   |
| 2. | 各成分とOtherの補正係数CF=obs/CMAQを算定      | ミする    |     |      |   |

= 0.74 ←海塩,土壌,和(µg/m<sup>3</sup>)
 1.44 ←35%秤量時の含水量(µg/m<sup>3</sup>)
 5.00%

○ 補正の手順

1. CMAQの各成分とOtherに補正係数CF=obs/CMAQを乗じて補正する

 C(MAQのFINE)は上の操作でOtherに補正されている 補正した成分濃度をE-AIMに入力して平衡水分量を出す 上のOther(=補正後のFINE)に海塩・土壌と平衡水分を加算し"FINE+"とする 50%秤量値とする場合は、さらに湿度補正分を"FINE+"に加算する
 補正後の成分計と"FINE+"の和を、補正後のPM<sub>2.5</sub>とする



## 図 18 測定濃度 (obs) と計算濃度 (CMAQ) 成分別濃度の対応(2008 年度・四季平均値)

季節別の補正係数の算定結果を表 19 に示した。また、季節別の obs と CMAQ の対応関係 は、図 19-1、図 19-2 に示す通りである。同表から、成分によっては季節別の補正係数の 変動(ばらつき)が比較的大きいことがわかる。このことから、CMAQ による将来予測値等 の補正は季節ごとに行い、その結果を平均して年平均の予測値とした。

|         | 春    | 夏    | 秋    | 冬    | 年    |
|---------|------|------|------|------|------|
| EC      | 1.50 | 1.64 | 1.51 | 1.31 | 1.48 |
| ORG_TOT | 2.32 | 2.31 | 2.06 | 1.80 | 2.09 |
| NITR    | 0.68 | 0.29 | 0.61 | 0.80 | 0.65 |
| SULF    | 1.10 | 1.62 | 1.58 | 2.61 | 1.56 |
| $NH_4$  | 0.97 | 1.23 | 0.87 | 1.32 | 1.08 |
| Other   | 1.44 | 0.54 | 3.07 | 0.99 | 1.74 |

表 19 季節別・成分別補正係数の算定結果(2008年度)



図 19-1 測定濃度 (obs) と計算濃度 (CMAQ) 成分別濃度の対応 (2008 年度・春及び夏平均値)



図 19-2 測定濃度 (obs) と計算濃度 (CMAQ) 成分別濃度の対応 (2008 年度・秋及び冬平均値)

#### (8) 発生源寄与推定結果の補正

ゼロアウト感度計算の結果に対して、表 18 に示した補正係数を有機粒子(ORG\_TOT)以 外の成分に乗じ、さらに海塩・土壌と水分を加えて補正する。ORG\_TOT 以外の成分につい ては、補正済み現況濃度と補正済み発生源別ゼロアウト濃度の較差を、各発生源からの寄 与濃度と考える。ORG\_TOT については、(6)発生源寄与推定で述べたように VOC 発生施設の 寄与が十分に出ないという問題があるため、別に扱うこととする。

ORG\_TOT については、前提条件として、CMB の知見に基づき v-OC 濃度を決める。すると 一次粒子(POA)も ORG\_TOT から v-OC を引いて出すことができる。v-OC は各種発生源への 分配を行わない。POA は PM2.5の発生源別排出量のパーセンテージ(表 20-3)、関東全体の 排出量に占める割合)を指標として、各発生源に分配する。ここで厳密には、POA 濃度に は「関東外から都内への寄与」が含まれると考えられるが、実測や CMB による知見からは、 関東外からの寄与の度合いを把握できない。一般的に、人為的 POA は長距離輸送の寄与が 小さいと考えられるので、ここでは POA を、関東外から都内への寄与を考慮せず、すべて 関東内の各種発生源に配分することとした。

補正及び POA 分配方法の詳細は、表 20-1 のコメントに示すとおりである。また、以上の 方法による補正結果及び発生源別寄与濃度推定結果は、表 20-1 及び図 20-1 に示すとおり である。図 20-2 には、都内の発生源からの寄与濃度を、上と同じ方法で推定した結果を併 せて示す。注:この補正係数は関東地方のデータを基に決定したものなので、東京都域へ適用し て計算した結果は本来の結果とは厳密には少し異なる。

|                 |                              |        |        | 裤            | <b>甫正後・μ g/</b> 1                                                      | m <sup>3</sup>                                                                           |                                                                             |                                                             |                                     |
|-----------------|------------------------------|--------|--------|--------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------|
|                 | 現況                           | 自動車out | 船舶out  | 大規模固<br>定out | 民生out                                                                  | 建機out                                                                                    | その他人<br>為out                                                                | VOC施設<br>out                                                | アンモニア<br>自然out                      |
| $PM_{2.5}$      | 19.07                        |        |        |              |                                                                        |                                                                                          |                                                                             |                                                             |                                     |
| EC              | 1.47                         | 0.91   | 1.24   | 1.42         | 1.40                                                                   | 1.09                                                                                     | 1.42                                                                        | 1.47                                                        | 1.49                                |
| ORG_TOT         | 5.11                         | 4.61   | 4.62   | 4.98         | 4.52                                                                   | 4.76                                                                                     | 4.31                                                                        | 4.94                                                        | 3.58                                |
| POA             | 1.14                         |        |        |              |                                                                        |                                                                                          |                                                                             |                                                             |                                     |
| v-OC            | 3.97                         |        |        |              |                                                                        |                                                                                          |                                                                             |                                                             |                                     |
| NITR            | 2.09                         | 1.52   | 1.95   | 1.89         | 2.07                                                                   | 2.01                                                                                     | 2.02                                                                        | 2.06                                                        | 0.50                                |
| SULF            | 4.51                         | 4.53   | 4.24   | 4.25         | 4.38                                                                   | 4.52                                                                                     | 4.49                                                                        | 4.52                                                        | 4.18                                |
| $NH_4$          | 2.13                         | 1.86   | 1.98   | 1.96         | 2.09                                                                   | 2.09                                                                                     | 2.09                                                                        | 2.12                                                        | 1.11                                |
| 成分計             | 15.32                        | 13.42  | 14.02  | 14.50        | 14.46                                                                  | 14.46                                                                                    | 14.32                                                                       | 15.12                                                       | 10.87                               |
|                 |                              |        |        |              |                                                                        |                                                                                          |                                                                             |                                                             |                                     |
| Other           | 1.49                         | 0.93   | 1.42   | 1.15         | 1.38                                                                   | 1.49                                                                                     | 1.12                                                                        | 1.50                                                        | 1.52                                |
| 海塩·土壤           | 0.76                         |        |        |              |                                                                        |                                                                                          |                                                                             |                                                             |                                     |
| 平衡水分            | 1.50                         |        |        |              |                                                                        |                                                                                          |                                                                             |                                                             |                                     |
| FINE+           | 3.75                         |        |        |              |                                                                        |                                                                                          |                                                                             |                                                             |                                     |
| CMB• $\mu$ g/m  | 3 年平均                        |        | 補正·分配0 | )方法          |                                                                        |                                                                                          |                                                                             |                                                             |                                     |
| v-OC            | 4.13                         |        |        | 感度解析結        | 果の補正                                                                   |                                                                                          |                                                                             |                                                             |                                     |
| 海塩·土壌           | 0.74                         |        |        |              | EC、NITR、S<br>亚海コンオ                                                     | SULF、NH4、C                                                                               | Otherは補正係                                                                   | 糸数を乗じて                                                      | 補正する。                               |
| E-AIM<br>平衡水分・µ | 年平均<br>g/m <sup>3</sup> 1.44 |        |        | 現況ORG_T      | 平衡小分は、<br>海塩・土壌に<br>OT(補正値=<br>v-OC濃度は<br>POAはORG<br>↑ CMBの一<br>POAの各発 | 、現 <b>ת</b> 補正後<br>CMBの結果<br>実測値)の分i<br>CMBの結果<br><u>TOTからv-C</u><br>次OC=0.77と<br>生源への分面 | の成分 <i>很良</i> で<br>。湿度補正水<br>配<br>。発生源に分<br>OCを差し引い<br>異なるが、その<br>とはPM2.s排出 | を使ってE-All<br>会は使用した<br>配しない。<br>たものとする。<br>の差は補正し<br>量を指標とす | мсшэ。<br>zい。<br>,<br>,<br>ない。<br>る。 |

表 20-1 関東の発生源ゼロアウト計算結果の補正

|                   | 自動車   | 船舶   | 大規模固定 | 民生   | 建機    | その他人為 | アンモニア<br>発生源、自<br>然 | v-OC | 関東外、非<br>線形効果補<br>正 | 海塩・土壤 | 平衡水分 | 計<br>µg/m³ |
|-------------------|-------|------|-------|------|-------|-------|---------------------|------|---------------------|-------|------|------------|
| PM <sub>2.5</sub> | 2.20  | 1.27 | 1.24  | 0.44 | 0.60  | 0.71  | 2.90                | 3.97 | 3.48                | 0.76  | 1.50 | 19.07      |
| EC                | 0.56  | 0.23 | 0.05  | 0.08 | 0.38  | 0.06  | -0.02               |      | 0.13                |       |      | 1.47       |
| POA               | 0.24  | 0.39 | 0.21  | 0.06 | 0.09  | 0.15  |                     |      |                     |       |      | 1.14       |
| v-OC              |       |      |       |      |       |       |                     | 3.97 |                     |       |      | 3.97       |
| NITR              | 0.58  | 0.15 | 0.20  | 0.02 | 0.09  | 0.08  | 1.59                |      | -0.61               |       |      | 2.09       |
| SULF              | -0.02 | 0.27 | 0.26  | 0.13 | -0.01 | 0.02  | 0.33                |      | 3.53                |       |      | 4.51       |
| $NH_4$            | 0.28  | 0.15 | 0.18  | 0.04 | 0.04  | 0.04  | 1.03                |      | 0.38                |       |      | 2.13       |
| Other             | 0.56  | 0.07 | 0.34  | 0.11 | 0.00  | 0.37  | -0.02               |      | 0.06                |       |      | 1.49       |
| 海塩·土壌             |       |      |       |      |       |       |                     |      |                     | 0.76  |      | 0.76       |
| 平衡水分              |       |      |       |      |       |       |                     |      |                     |       | 1.50 | 1.50       |

表 20-2 関東発生源ゼロアウト計算結果(補正後)に基づく発生源別寄与濃度推定

## 表 20-3 関東地方の PM<sub>2.5</sub>発生源別排出量集計結果・現況(2008 年度)

排出量(t/年)

|         | 東京都   | 関東地方   |
|---------|-------|--------|
| 自動車     | 848   | 5,071  |
| 船舶      | 722   | 8,205  |
| 大規模固定煙源 | 189   | 4,320  |
| 民生      | 416   | 1,214  |
| 建設機械等   | 392   | 1,895  |
| その他人為   | 662   | 3,023  |
| 計       | 3,230 | 23,728 |

関東地方の排出量に対する割合

|              | 東京都   | 関東地方   |
|--------------|-------|--------|
| 自動車          | 3.6%  | 21.4%  |
| 船舶           | 3.0%  | 34.6%  |
| 大規模固定煙源      | 0.8%  | 18.2%  |
| 民生           | 1.8%  | 5.1%   |
| 建設機械等        | 1.7%  | 8.0%   |
| <u>その他人為</u> | 2.8%  | 12.7%  |
| 計            | 13.6% | 100.0% |
|              |       |        |

外洋航路は関東・船舶に含めた



図 20-1 関東の発生源ゼロアウト計算結果の補正結果に基づく発生源別寄与割合推定



図 20-2 都内の発生源ゼロアウト計算結果の補正結果に基づく発生源別寄与割合推定

#### (9) 単純将来濃度計算結果

数値型モデル(CMAQ)による単純将来濃度の予測結果は、表 21 及び図 21 に示すとおりである。表 21 には各成分の補正係数(表 18 より再掲)も併せて掲げる。

### 表 21 数値モデルによる都内 PM2.5 単純将来(2016)濃度予測結果(未補正)

|                 | 補正前·  | $\mu$ g/m <sup>3</sup> | 補正係数CF   |
|-----------------|-------|------------------------|----------|
|                 | 現況    | 単純将来                   | obs/CMAQ |
| $PM_{2.5}$      | 12.42 | 10.77                  |          |
| EC              | 1.00  | 0.52                   | 1.48     |
| ORG_TOT         | 2.45  | 2.14                   | 2.09     |
| NITR            | 3.21  | 2.65                   | 0.65     |
| SULF            | 2.88  | 2.92                   | 1.56     |
| NH <sub>4</sub> | 1.97  | 1.82                   | 1.08     |
| 成分計             | 11.51 | 10.05                  |          |
| FINE            | 0.91  | 0.72                   |          |
| Other           | 0.91  | 0.72                   | 1.74     |

成分計=EC+ORG\_TOT+NITR+SULF+NH4 FINE=PM<sub>2.5</sub>-成分計



都内PM<sub>25</sub>の単純将来(2016年度)濃度予測 (CMAQ·未補正)

図 21 数値モデルによる都内 PM2.5 単純将来(2016)濃度予測結果(未補正)

#### (10) 単純将来発生源寄与推定

単純将来の関東地方の8種類の発生源のゼロアウトに対する成分別濃度の応答は、表 22-1 及び図 22-1 に示すとおりである。関東地方の人為発生源に対しては、大規模固定の 応答が最大で(1.37 µg/m<sup>3</sup>),次いで自動車(1.16 µg/m<sup>3</sup>),船舶(1.14 µg/m<sup>3</sup>),その他人為 起源(0.74 µg/m<sup>3</sup>)である。現況との違いは、自動車の応答が半減に近く、大規模固定煙源 の応答が 36%程度増加していることが大きい。船舶や民生の応答はやや増、その他の人為 発生源と建機は低下している。

現況と同様に「アンモニア発生源及び自然発生源」の削除に対する応答は比較的大きく、 非線形性の影響が表れている可能性がある。

| 表 22-1 🚦 | 関東の発生源別ゼロアウ | ト計算に対す | る成分別濃度の応答 |
|----------|-------------|--------|-----------|
|----------|-------------|--------|-----------|

|                   | · · · μ g/m <sup>3</sup> |        |       |          |       |       |          |          |          |
|-------------------|--------------------------|--------|-------|----------|-------|-------|----------|----------|----------|
|                   | 単純将来                     | 自動車out | 船舶out | 大規模固定out | 民生out | 建機out | その他人為out | VOC施設out | アンモ自然out |
| PM <sub>2.5</sub> | 10.77                    | 9.61   | 9.62  | 9.40     | 10.03 | 10.58 | 10.03    | 10.67    | 6.98     |
| EC                | 0.52                     | 0.43   | 0.35  | 0.48     | 0.46  | 0.45  | 0.48     | 0.52     | 0.52     |
| ORG <u>.</u> TOT  | 2.14                     | 2.05   | 1.89  | 2.07     | 1.83  | 2.09  | 1.79     | 2.06     | 1.45     |
| NITR              | 2.65                     | 2.00   | 2.35  | 2.03     | 2.50  | 2.60  | 2.54     | 2.62     | 0.62     |
| SULF              | 2.92                     | 2.92   | 2.71  | 2.74     | 2.85  | 2.92  | 2.90     | 2.93     | 2.69     |
| NH <sub>4</sub>   | 1.82                     | 1.63   | 1.66  | 1.58     | 1.75  | 1.81  | 1.79     | 1.82     | 0.98     |
| 成分計               | 10.05                    | 9.04   | 8.97  | 8.90     | 9.39  | 9.86  | 9.50     | 9.95     | 6.26     |
| FINE              | 0.72                     | 0.57   | 0.65  | 0.50     | 0.65  | 0.72  | 0.53     | 0.72     | 0.73     |

成分計=EC+ORG\_TOT+NITR+SULF+NH<sub>4</sub> FINE=PM<sub>2.5</sub>-成分計

※ 2016 年度・特別観測期間(四季)平均・都内特別観測地点(一般局)平均



図 22-1 関東の発生源別ゼロアウト計算に対する成分別濃度の応答

2016年度・特別観測期間(四季)平均・都内特別観測地点(一般局)平均

ゼロアウト計算結果に基づく発生源別寄与濃度の推定結果は、表 22-2 に示す通りである。 また、この結果に基づく発生源別寄与率の推定結果は、図 22-2 に示す通りである。ここで、 感度計算を行わなかった発生源カテゴリーである「関東以外の寄与」については、現況濃 度から自動車~アンモニア発生施設・自然までの寄与の総和をさし引いた残差として出し ている。そのためこのカテゴリーには、非線形効果の補正項も含まれることになる。

既に述べたように、現況シミュレーションでは有機エアロゾル(ORG\_TOT:OA)の計算結果が過小評価傾向であった。そのため、この単純将来の寄与推定においても、特に VOC 発生施設の寄与が過小に評価されていると考えられる。このため、現況と同様に、有機粒子の寄与推定には、シミュレーション以外の情報も利用することが必要と考えられる。

#### 表 22-2 ゼロアウト計算結果に基づく発生源別寄与濃度の推定



船舶out 大規模固定out

9.40

1.37

9.62

1.14

単純将来 自動車out

9.61

1.16

10.77

補正前•μg/m

単純将来-outケ

PM<sub>2</sub> =

2016年度・特別観測期間(四季)平均・都内特別観測地点(一般局)平均

民生out

10.03

0.73

10.58

0.19

建機out その他人為out VOC施設out アンモ自然out

10.67

0.10

6.98

3.78

10.03

0.74

#### 図 22-2 ゼロアウト計算結果に基づく発生源別寄与率の推定

2016年度・特別観測期間(四季)平均・都内特別観測地点(一般局)平均

(8) 発生源寄与推定結果の補正と同様の手法で PM<sub>2.5</sub>の成分別に発生源別寄与濃度を推定 した結果は、表 22-3 及び図 22-3 に示すとおりである。非線形効果により、寄与濃度が負 になる成分・発生源があるが、特に大きいのは NITR のケースである。これは、アンモニア 発生源の削除に対する NITR の減少の応答が過大で、それを補償したためにマイナスの値に なったと考えられる。

### 表 22-3 ゼロアウト計算結果に基づく発生源別・成分別寄与濃度の推定

|         | 自動車   | 船舶   | 大規模<br>固定 | 民生   | 建機   | その他<br>人為 | VOC<br>発生施設 | <ul><li>アンモニア</li><li>発生源、</li><li>自然</li></ul> | 関東以外<br>の寄与、<br>非線形<br>効果の補正 |
|---------|-------|------|-----------|------|------|-----------|-------------|-------------------------------------------------|------------------------------|
| EC      | 0.09  | 0.17 | 0.03      | 0.05 | 0.07 | 0.04      | 0.00        | -0.01                                           | 0.07                         |
| ORG_TOT | 0.10  | 0.25 | 0.07      | 0.31 | 0.05 | 0.35      | 0.09        | 0.69                                            | 0.23                         |
| NITR    | 0.65  | 0.30 | 0.62      | 0.15 | 0.05 | 0.11      | 0.03        | 2.03                                            | -1.28                        |
| SULF    | -0.01 | 0.20 | 0.18      | 0.07 | 0.00 | 0.01      | -0.01       | 0.23                                            | 2.24                         |
| $NH_4$  | 0.19  | 0.16 | 0.25      | 0.07 | 0.01 | 0.04      | 0.00        | 0.85                                            | 0.26                         |
| FINE    | 0.15  | 0.07 | 0.22      | 0.07 | 0.00 | 0.19      | 0.00        | -0.01                                           | 0.03                         |

2016 年度・特別観測期間(四季)平均・都内特別観測地点(一般局)平均 µg/m<sup>3</sup>

BaU•補正前:10.77μg/m<sup>3</sup>



図 22-3 ゼロアウト計算結果に基づく発生源別・成分別寄与濃度の推定 2016 年度・特別観測期間(四季)平均・都内特別観測地点(一般局)平均

なお、都内の各種発生源に対しても、同様にゼロアウト感度計算を行った。結果は表 23-1 ~表 23-3、図 23-1~図 23-3 に示すとおりである。現況との違いは、自動車と建設機械(建 機)の応答が低くなり、相対的に船舶が高くなっていた。

| 表 23-1 着 | 都内の発生源別ゼロアウ | ト計算に対す | る成分別濃度の応答 |
|----------|-------------|--------|-----------|
|----------|-------------|--------|-----------|

|                   | 補正前・µg/m <sup>3</sup> |        |       |          |       |       |          |          |          |
|-------------------|-----------------------|--------|-------|----------|-------|-------|----------|----------|----------|
|                   | 単純将来                  | 自動車out | 船舶out | 大規模固定out | 民生out | 建機out | その他人為out | VOC施設out | アンモ自然out |
| PM <sub>2.5</sub> | 10.77                 | 10.30  | 10.48 | 10.69    | 10.38 | 10.67 | 10.36    | 10.74    | 9.76     |
| EC                | 0.52                  | 0.47   | 0.44  | 0.51     | 0.48  | 0.46  | 0.49     | 0.52     | 0.52     |
| ORG_TOT           | 2.14                  | 2.08   | 2.03  | 2.13     | 1.92  | 2.10  | 1.94     | 2.12     | 1.92     |
| NITR              | 2.65                  | 2.47   | 2.63  | 2.66     | 2.63  | 2.65  | 2.60     | 2.64     | 2.07     |
| SULF              | 2.92                  | 2.91   | 2.88  | 2.90     | 2.87  | 2.92  | 2.91     | 2.92     | 2.91     |
| NH <sub>4</sub>   | 1.82                  | 1.77   | 1.81  | 1.82     | 1.80  | 1.82  | 1.81     | 1.82     | 1.62     |
| 成分計               | 10.05                 | 9.70   | 9.79  | 10.01    | 9.71  | 9.95  | 9.75     | 10.02    | 9.04     |
| FINE              | 0.72                  | 0.61   | 0.69  | 0.68     | 0.67  | 0.72  | 0.60     | 0.72     | 0.72     |

2016年度・特別観測期間(四季)平均・都内特別観測地点(一般局)平均



図 23-1 都内の発生源別ゼロアウト計算に対する成分別濃度の応答 2016年度・特別観測期間(四季)平均・都内特別観測地点(一般局)平均

## 表 23-2 ゼロアウト計算結果に基づく都内発生源別寄与濃度の推定 2016年度・特別観測期間(四季)平均・都内特別観測地点(一般局)平均

| 補正前•µg/m <sup>3</sup> | 単純将来  | 自動車out | 船舶out | 大規模固定out | 民生out | 建機out | その他人為out | VOC施設out | アンモ自然out |
|-----------------------|-------|--------|-------|----------|-------|-------|----------|----------|----------|
| PM <sub>2.5</sub>     | 10.77 | 10.30  | 10.48 | 10.69    | 10.38 | 10.67 | 10.36    | 10.74    | 9.76     |

1.01

 $\overline{PM}_{2.5}$ 

- ス



図 23-2 都内の発生源別ゼロアウト計算結果に基づく発生源別寄与率の推定 2016年度・特別観測期間(四季)平均・都内特別観測地点(一般局)平均

### 表 23-3 ゼロアウト計算結果に基づく都内発生源別・成分別寄与濃度の推定

|         | 自動車  | 舟谷舟白 | 大規模固定 | 民生   | 建機   | その他人為 | アンモニア発<br>生源、自然 | v-OC | 都外、非線<br>形効果補正 |
|---------|------|------|-------|------|------|-------|-----------------|------|----------------|
| EC      | 0.05 | 0.08 | 0.01  | 0.04 | 0.06 | 0.03  | 0.00            | 0.00 | 0.26           |
| ORG_TOT | 0.07 | 0.11 | 0.02  | 0.22 | 0.04 | 0.21  | 0.03            | 0.22 | 1.23           |
| NITR    | 0.18 | 0.01 | -0.01 | 0.02 | 0.00 | 0.04  | 0.01            | 0.58 | 1.81           |
| SULF    | 0.00 | 0.04 | 0.02  | 0.04 | 0.00 | 0.00  | 0.00            | 0.01 | 2.81           |
| $NH_4$  | 0.06 | 0.02 | 0.00  | 0.02 | 0.00 | 0.01  | 0.00            | 0.21 | 1.50           |
| FINE    | 0.11 | 0.03 | 0.04  | 0.05 | 0.00 | 0.11  | 0.00            | 0.00 | 0.37           |

2016年度・特別観測期間(四季)平均・都内特別観測地点(一般局)平均



# 図 23-3 都内の発生源別ゼロアウト計算結果に基づく発生源別・成分別寄与濃度の推定 2016年度・特別観測期間(四季)平均・都内特別観測地点(一般局)平均

#### (11) 単純将来濃度計算結果の補正

表 17 に示した未補正の計算値に、同表に示した成分別補正係数を乗じ、さらに海塩・土 壌(現況スライド)と平衡水分(成分濃度補正値を使って E-AIM (<u>http://www.aim.env.</u> <u>uea. ac. uk/aim/aim. php/</u>)で計算)を加算して補正した結果は、表 24 及び図 24 に示すと おりである。これらの図表からわかるように、単純将来(2016 年度)においては、17.21  $\mu$ g/m<sup>3</sup>という予測結果となっており、何らかの対策を講じなければ、都内においては一般 局でも環境基準の達成が難しいと考えられる。

## 表 24 数値モデルによる都内 PM2.5 単純将来(2016)濃度予測結果(補正後)

|                   | 補正後·  | $\mu \text{ g/m}^3$ |
|-------------------|-------|---------------------|
|                   | 現況    | 単純将来                |
| PM <sub>2.5</sub> | 19.07 | 17.21               |
| EC                | 1.47  | 0.77                |
| ORG_TOT           | 5.11  | 4.74                |
| NITR              | 2.09  | 1.74                |
| SULF              | 4.51  | 4.56                |
| NH <sub>4</sub>   | 2.13  | 1.98                |
| 成分計               | 15.32 | 13.79               |
| FINE              |       |                     |
| Other             | 1.49  | 1.17                |
| 海塩·土壤             | 0.76  | 0.76                |
| 平衡水分              | 1.50  | 1.49                |
| FINE+             | 3.75  | 3.42                |

成分計=EC+ORG\_TOT+NITR+SULF+NH4 FINE+=Other+海塩・土壌+平衡水分 海塩・土壌はCMBの結果 平衡水分は補正後成分濃度をE-AIMに入力して算出 PM<sub>2.5</sub>=成分計+"FINE+"



図 24 数値モデルによる都内 PM2.5 単純将来(2016)濃度予測結果(補正後)

#### (12) 単純将来発生源寄与推定結果の補正

(8)で現況濃度に対して行った方法とほぼ同様に、ゼロアウト感度計算の結果に対して、 表18に示した補正係数を各成分(ORG\_TOT 含む)に乗じ、さらに海塩・土壌と水分を足し て補正する。有機粒子(ORG\_TOT:OA)以外の成分については、補正済み単純将来濃度と補 正済み発生源別ゼロアウト濃度の較差を、各発生源からの寄与濃度と考える。ORG\_TOT に ついては、VOC 発生施設の寄与が十分に出ないという問題があるため、現況と同じく別扱 いとする。

ORG\_TOT については、まず現況年度と単純将来の PM<sub>2.5</sub> 排出量の比(表 25-3)から、POA 濃度を決める。v-OC は、ORG\_TOT から POA を引いて出すことができる。v-OC は各種発生源 への分配を行わない。POA は、現況と同様に、PM<sub>2.5</sub>の単純将来発生源別排出量のパーセン テージ(表 25-3)、関東全体の排出量に占める割合)を指標として、各発生源に分配する。 「関東外から都内への寄与」は、現況と同様に考慮しない。

補正及び POA 分配方法の詳細は、表 25-1 のコメントに示すとおりである。また、以上の 方法による補正結果及び発生源別寄与濃度推定結果は、表 25-2 及び図 25 に示すとおりで ある。表 26-2 及び図 26 には、都内の発生源からの寄与濃度を、上と同じ方法で推定した 結果を併せて示す。なお、都内の補正結果は表 26-1 に示すとおりである。

|            |        | 補正後・µg/m <sup>3</sup> |       |          |       |       |        |             |                 |
|------------|--------|-----------------------|-------|----------|-------|-------|--------|-------------|-----------------|
|            | 単純将来   | 自動車out                | 船舶out | 大規模固定out | 民生out | 建機out | その他人為o | ut VOC施設out | アンモニア・<br>自然out |
| $PM_{2.5}$ | 17.21  |                       |       |          |       |       |        |             |                 |
| EC         | 0.77   | 0.70                  | 0.65  | 0.76     | 0.72  | 0.69  | 0.73   | 0.77        | 0.77            |
| ORG_TO1    | 4.74   | 4.59                  | 4.48  | 4.70     | 4.28  | 4.65  | 4.28   | 4.68        | 4.24            |
| POA        | 0.93   |                       |       |          |       |       |        |             |                 |
| v-OC       | 3.81   |                       |       |          |       |       |        |             |                 |
| NITR       | 1.74   | 1.62                  | 1.74  | 1.75     | 1.73  | 1.74  | 1.71   | 1.74        | 1.38            |
| SULF       | 4.56   | 4.56                  | 4.50  | 4.53     | 4.48  | 4.56  | 4.56   | 4.57        | 4.55            |
| NH4        | 1.98   | 1.91                  | 1.96  | 1.97     | 1.95  | 1.98  | 1.96   | 1.98        | 1.76            |
| 成分計        | 13.79  | 13.38                 | 13.33 | 13.71    | 13.16 | 13.61 | 13.24  | 13.73       | 12.70           |
|            |        |                       |       |          |       |       |        |             |                 |
| Other      | 1.17   | 1.02                  | 1.14  | 1.12     | 1.13  | 1.17  | 1.02   | 1.17        | 1.17            |
| 海塩·土壤      | § 0.76 |                       |       |          |       |       |        |             |                 |
| 平衡水分       | 1.49   |                       |       |          |       |       |        |             |                 |
| FINE+      | 3.42   |                       |       |          |       |       |        |             |                 |

表 25-1 関東の発生源ゼロアウト計算結果の補正

補正・分配の方法

感度解析結果の補正

EC、NITR、SULF、NH4、Otherは補正係数を乗じて補正する。 平衡水分は、BaU補正後の成分濃度を使ってE-AIMで出す。 海塩・土壌はCMBの結果(現況スライド)。湿度補正水分は使用しない。 単純将来ORG\_TOT(補正値)の分配

> CMAQの結果から、SOA(v-OC)とPOAの低減率(単純将来/現況)を出す。 現況補正後のv-OCとPOAに上の低減率を乗じ単純将来補正後を出す。 POAの各発生源への分配はPM2.。排出量(BaU)を指標とする。
|                   | 自動車   | 船舶   | 大規模固<br>定 | 民生   | 建機   | その他人<br>為 | <ul><li>アンモニア</li><li>発生源、</li><li>自然</li></ul> | v-OC | 都外、非<br>線形効果<br>補正 | 海塩·土壤 | 平衡水分 | 計<br>µg/m³ |
|-------------------|-------|------|-----------|------|------|-----------|-------------------------------------------------|------|--------------------|-------|------|------------|
| PM <sub>2.5</sub> | 1.03  | 1.39 | 1.46      | 0.52 | 0.17 | 0.62      | 2.50                                            | 3.81 | 3.46               | 0.76  | 1.49 | 17.21      |
| EC                | 0.13  | 0.25 | 0.05      | 0.08 | 0.11 | 0.06      | -0.01                                           |      | 0.11               |       |      | 0.77       |
| POA               | 0.07  | 0.43 | 0.21      | 0.06 | 0.02 | 0.14      |                                                 |      |                    |       |      | 0.93       |
| v-OC              |       |      |           |      |      |           |                                                 | 3.81 |                    |       |      | 3.81       |
| NITR              | 0.43  | 0.17 | 0.37      | 0.10 | 0.03 | 0.07      | 1.30                                            |      | -0.74              |       |      | 1.74       |
| SULF              | -0.01 | 0.30 | 0.28      | 0.14 | 0.00 | 0.02      | 0.33                                            |      | 3.50               |       |      | 4.56       |
| NH4               | 0.20  | 0.17 | 0.25      | 0.08 | 0.01 | 0.04      | 0.90                                            |      | 0.32               |       |      | 1.98       |
| Other             | 0.21  | 0.07 | 0.29      | 0.07 | 0.00 | 0.29      | -0.02                                           |      | 0.27               |       |      | 1.17       |
| 海塩·土壌             |       |      |           |      |      |           |                                                 |      |                    | 0.76  |      | 0.76       |
| 平衡水分              |       |      |           |      |      |           |                                                 |      |                    |       | 1.49 | 1.49       |

表 25-2 関東発生源ゼロアウト計算結果(補正後)に基づく発生源別寄与濃度推定

# 表 25-3 関東地方の PM<sub>2.5</sub>発生源別排出量集計結果(2016 年度)

排出量(t/年)

| 自動車3411,5船舶8018,9 | 01  |
|-------------------|-----|
| 船舶 801 8,9        | -0  |
| ,,                | 58  |
| 大規模固定煙源 192 4,4   | 45  |
| 民生 421 1,2        | 52  |
| 建設機械等 117 4       | 27  |
| その他人為 654 2,8     | 90  |
| 計 2,526 19,4      | 72  |
|                   | .1% |
| A 洋姑吹け間声, 叭筋に合めた  |     |

関東地方の排出量に対する割合 東京都 関東地方 自動車 1.8% 7.7% 船舶 46.0% 4.1% 大規模固定煙源 22.8% 1.0% 民生 2.2% 6.4% 建設機械等 2.2% 0.6% その他人為 14.8% 3.4% 計 13.0% 100.0%

\_BaU•補正 •分配後∶17.21 μ g/m <sup>3</sup> 自動車 -平衡水分 6.0% 8.7% 船舶 海塩·土壤 4.4% 大規模固定 8.5% 関東外、非線形効果 民生 補正 3.0% 20.1% 建機 1.0% その他人為 3.6% アンモニア発生源、 自然 14.5% v-OC 22.1%

※自動車、船舶、大規模固定、民生、建機、その他人為、アンモニア発生源&自然、 都外&非線形効果補正の寄与分にはv-OC が含まれない

# 図 25-1 関東の発生源ゼロアウト計算結果(補正)に基づく発生源別寄与濃度推定

|                        | - 補正後・μ g/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |       |          |       |       |          |          |                    |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|----------|-------|-------|----------|----------|--------------------|
|                        | 単純将来                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 自動車out | 船舶out | 大規模固定out | 民生out | 建機out | その他人為out | VOC施設out | )<br>シモニノ<br>自然out |
| PM <sub>2.5</sub>      | 17.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |       |          |       |       |          |          |                    |
| EC                     | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.70   | 0.65  | 0.76     | 0.72  | 0.69  | 0.73     | 0.77     | 0.77               |
| ORG_TOT                | 4.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.59   | 4.48  | 4.70     | 4.28  | 4.65  | 4.28     | 4.68     | 4.24               |
| POA                    | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |       |          |       |       |          |          |                    |
| v-OC                   | 3.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |       |          |       |       |          |          |                    |
| NITR                   | 1.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.62   | 1.74  | 1.75     | 1.73  | 1.74  | 1.71     | 1.74     | 1.38               |
| SULF                   | 4.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.56   | 4.50  | 4.53     | 4.48  | 4.56  | 4.56     | 4.57     | 4.55               |
| NH4                    | 1.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.91   | 1.96  | 1.97     | 1.95  | 1.98  | 1.96     | 1.98     | 1.76               |
| 成分計                    | 13.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13.38  | 13.33 | 13.71    | 13.16 | 13.61 | 13.24    | 13.73    | 12.70              |
| Other<br>海塩・土壌<br>平衡水分 | $1.17 \\ 0.76 \\ 1.49 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ $ | 1.02   | 1.14  | 1.12     | 1.13  | 1.17  | 1.02     | 1.17     | 1.17               |
| FINE+                  | 3.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |       |          |       |       |          |          |                    |

# 表 26-1 都内の発生源ゼロアウト計算結果の補正

補正・分配の方法

感度解析結果の補正

EC、NITR、SULF、NH4、Otherは補正係数を乗じて補正する。 平衡水分は、BaU補正後の成分濃度を使ってE-AIMで出す。 海塩・土壌はCMBの結果(現況スライド)。湿度補正水分は使用しない。 単純将来ORG\_TOT(補正値)の分配 CMAQの結果から、SOA(v-OC)とPOAの低減率(単純将来/現況)を出

現況補正後のv-OCとPOAに上の低減率を乗じ単純将来補正後を出す POAの各発生源への分配はPM<sub>25</sub>排出量(BaU)を指標とする。

|                   | 自動車  | 船舶   | 大規模固<br>定 | 民生   | 建機   | その他人<br>為 | アンモニフ<br>発生源、<br>自然 | v-OC | 都外、非<br>線形効果<br>補正 | 海塩・土壌 | 平衡水分 | 計<br>µg/m <sup>3</sup> |
|-------------------|------|------|-----------|------|------|-----------|---------------------|------|--------------------|-------|------|------------------------|
| PM <sub>2.5</sub> | 0.43 | 0.28 | 0.11      | 0.24 | 0.09 | 0.28      | 0.60                | 3.81 | 9.13               | 0.76  | 1.49 | 17.21                  |
| EC                | 0.07 | 0.12 | 0.01      | 0.05 | 0.09 | 0.04      | 0.00                |      | 0.39               |       |      | 0.77                   |
| POA               | 0.02 | 0.04 | 0.01      | 0.02 | 0.01 | 0.03      | 0.00                |      | 0.81               |       |      | 0.93                   |
| v-OC              |      |      |           |      |      |           |                     | 3.81 |                    |       |      | 3.81                   |
| NITR              | 0.12 | 0.01 | -0.01     | 0.01 | 0.00 | 0.03      | 0.36                |      | 1.22               |       |      | 1.74                   |
| SULF              | 0.00 | 0.06 | 0.03      | 0.09 | 0.00 | 0.01      | 0.01                |      | 4.36               |       |      | 4.56                   |
| NH4               | 0.06 | 0.02 | 0.01      | 0.02 | 0.00 | 0.02      | 0.22                |      | 1.63               |       |      | 1.98                   |
| Other             | 0.15 | 0.03 | 0.05      | 0.05 | 0.00 | 0.16      | 0.00                |      | 0.73               |       |      | 1.17                   |
| 海塩·土壤             |      |      |           |      |      |           |                     |      |                    | 0.76  |      | 0.76                   |
| 平衡水分              |      |      |           |      |      |           |                     |      |                    |       | 1.49 | 1.49                   |

# 表 26-2 都内発生源ゼロアウト計算結果(補正後)に基づく発生源別寄与濃度推定



※自動車、船舶、大規模固定、民生、建機、その他人為、アンモニア発生源&自然、 都外&非線形効果補正の寄与分にはv-OC が含まれない

図 26 都内の発生源ゼロアウト計算結果(補正)に基づく発生源別寄与濃度推定

### (13) 対策将来濃度計算結果及びその補正

数値モデル (CMAQ) を用いて、PM<sub>2.5</sub>の将来濃度の予測を行った。シナリオは、単純将来 (BaU<sup>\*1</sup>)、BAT<sup>\*2</sup>、RACT/RACM<sup>\*3</sup>である。将来濃度の予測結果は、表 27-1 及び図 27-1 に示 すとおりである。図表には、現況と単純将来のシミュレーション結果も併せて示す。

|                   | 現況    | 単純将来  | BAT  | RACT/RACM |
|-------------------|-------|-------|------|-----------|
| EC                | 1.00  | 0.52  | 0.36 | 0.38      |
| ORG_TOT           | 2.45  | 2.14  | 1.32 | 1.35      |
| NITR              | 3.21  | 2.65  | 2.07 | 2.25      |
| SULF              | 2.88  | 2.92  | 2.54 | 2.58      |
| $NH_4$            | 1.97  | 1.82  | 1.51 | 1.59      |
| FINE              | 0.91  | 0.72  | 0.26 | 0.30      |
| PM <sub>2.5</sub> | 12.42 | 10.77 | 8.06 | 8.45      |

表 27-1 成分別・PM2.5 対策将来濃度予測結果(都内一般局・年平均・未補正)

<sup>※</sup>現況は 2008 年度、将来は 2016 年度 (µg/m<sup>3</sup>)





- \*1 BaU: Business as Usual (単純将来) 自動車のポスト新長期規制や建設機械のオフロード規制など既定の対策を継続
- \*2 BAT: Best Available Technology
  - 大規模固定煙源の電化やガソリン車の電気自動車化などを関東地方全域で実施
- \*3 RACT/RACM: Reasonably Available Control Technology / Measures 大規模固定煙源のガス化やガソリン車のハイブリッド化などを関東地方全域で実施

(10)の単純将来濃度予測結果と同様に、これらの将来予測結果を補正した結果を表 27-2
及び図 27-2 に示す。平衡水分量は、シナリオごとに補正後成分濃度を用いて、E-AIM モデル(http://www.aim.env.uea.ac.uk/aim/aim.php/)で算定した。

|            | 現況    | 単純将来  | BAT   | RACT/RACM |
|------------|-------|-------|-------|-----------|
| EC         | 1.47  | 0.77  | 0.54  | 0.56      |
| ORG_TOT    | 5.11  | 4.74  | 3.60  | 3.67      |
| NITR       | 2.09  | 1.74  | 1.39  | 1.50      |
| SULF       | 4.51  | 4.56  | 3.95  | 4.02      |
| $NH_4$     | 2.13  | 1.98  | 1.65  | 1.72      |
| Other      | 1.49  | 1.17  | 0.42  | 0.49      |
| 海塩·土壤      | 0.76  | 0.76  | 0.76  | 0.76      |
| 平衡水分       | 1.50  | 1.49  | 1.25  | 1.29      |
| $PM_{2.5}$ | 19.07 | 17.21 | 13.55 | 14.01     |

表 27-2 成分別・PM25将来濃度予測結果(都内一般局・年平均・補正後)

※現況は 2008 年度、将来は 2016 年度 (µg/m<sup>3</sup>)



図 27-2 成分別・PM<sub>2.5</sub>将来濃度予測結果(都内一般局・年平均・補正後) ※現況は 2008 年度、将来は 2016 年度

6 まとめ

#### (1) 経緯と評価

シミュレーション手法に関するワーキンググループは、東京都及び関東地方における PM<sub>2.5</sub> 濃度を予測するため、インベントリの作成、シミュレーションモデルの選定・作成か ら始め、現況再現、感度解析並びに将来予測を行い、モデルの評価と利用に関する一連の メニューに沿って検討を行ってきた。

インベントリ作成においては、自動車や大規模固定発生源の排出量が低減しているため、 従来未把握であった小規模発生源を調査し対象の拡大を図るなどの改良を試みている。

また、シミュレーションについては、二次生成物質の濃度予測に適した数値型シミュレ ーションモデル(化学輸送モデル)を選定し、入力データを整備して予測計算を行った結 果、国内で報告されている再現性レベルに近い PM<sub>2.5</sub>濃度予測結果を得ることができたと考 えられる。しかし、予測結果は実測濃度に対して過小評価であったり、感度解析の応答が 小さいなど必ずしも必要十分な再現性や妥当性が得られていないと判断された。そのため、 数値型シミュレーションモデルの計算結果に対してできる限り合理的な補正を行い、発生 源寄与や将来濃度を評価することとした。

なお、二次有機粒子等の内訳が明らかでないこと、また、感度解析の結果から、二次生 成粒子についての削減量と濃度低減との間に非線形な関係があること及びアンモニアを削 減した場合の応答が過大であることなど、得られた結果を政策検討のために使用するには 十分に注意する必要がある。

#### (2) 推計結果

① 将来における環境濃度について

平成 20 年度の PM2.5 大気環境調査結果を用いて、数値型シミュレーションモデルにより将来(平成 28 年度)における環境濃度を予測した。その結果、現況の一般局における PM2.5 の濃度は 19.1  $\mu$  g/m<sup>3</sup> であるが、既定の対策を継続した場合(BaU)、17.2  $\mu$  g/m<sup>3</sup> という予測結果となった。

②現状における発生源寄与について

現況(平成 20 年度)における東京都の大気環境中 PM<sub>2.5</sub>の都内発生源別寄与割合は、 人為発生源が約 11%、自然発生源等が約 4 %、都外が約 53%であった。

一方、東京都の大気環境中 PM<sub>2.5</sub>の関東地方発生源別寄与割合は、人為発生源が約 34%、 自然発生源等が約 15%、関東外が約 18%であった。なお、二次有機粒子等については 発生源を区別することが困難であった。

③将来における発生源寄与について

将来(平成28年度、BaU)における東京都の大気環境中PM<sub>2.5</sub>の都内発生源別寄与割 合は、人為発生源が約8%、自然発生源等が約4%、都外が約53%であった。

一方、東京都の大気環境中 PM<sub>2.5</sub>の関東地方発生源別寄与割合は、人為発生源が約 30%、 自然発生源等が約 15%、関東外が約 20%であった。人為発生源のうち、自動車、建設 機械の寄与が低減し、相対的に船舶、大規模固定発生源の寄与が増加している。 なお、現況と同様に二次有機粒子等については発生源を区別することが困難であった。

### (3) 今後の課題

このような経緯と検討の到達点を踏まえると、シミュレーションの精度向上については 次の点が課題となると思われる。

- ①インベントリ関連では、発生源調査データ(特に、PM<sub>2.5</sub>排出実態データ)が少ないことによるインベントリの不確実性を減らすこと、小規模な発生源や未把握発生源におけるインベントリの整備を進めること、今回、取組が十分でなかった凝縮性ダストのインベントリ整備を進めることなどが課題としてあげられる。
- ②シミュレーション関連では、過小評価となっている硫酸イオン、アンモニウムイオン、 二次有機粒子等、過大評価されている硝酸イオンの予測精度の向上が課題となる。特に、 二次有機粒子については、VOC対策を進める上で、モデルの精度向上が重要である。ま た、硝酸イオンについては、粒子だけではなくガスを含めた全硝酸としての測定も課題 である。



編集発行 東京都環境局環境改善部計画課 TEL 03-5388-3482

東京都微小粒子状物質検討会報告 資料集

| 平  | 成   | 2   | 3   | 年   | 度 |
|----|-----|-----|-----|-----|---|
| 登  | 録番  | 号   | 第   | 4 2 | 号 |
| 環境 | 竟資彩 | ∤第2 | 230 | 023 | 号 |

平成23年9月発行